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Abstract—A novel method for the partitioning and geometric
characterization of curves is presented. The method starts by
generating a multi-resolution amplitude space using labeling
functions which identify curved, inflexion and straight segments.
Partitioning is based on the detection of curved segments, by
analysing the change in amplitude along the resolution axis.
Abstraction of partitioned segments occurs by forming spectra
of the space (along the resolution axis), from which global and
local attributes are derived (alternating, angularity, jaggedness,
etc). The attributes can be used to span a low-dimensional space
in which a wide range of curve geometries and hence features is
expressed. The methodology is essential for the rapid construction
of mid- and higher-level features.

Index Terms—curve description, curve partitioning, multi-
resolution, feature representation, low-dimensional

I. INTRODUCTION

The goal of curve partitioning is to compartmentalize an
(open or closed) curve into segments such that it permits
the proper grouping (clustering) with other curve segments,
which in turn would lead to a part-based shape recognition.
This goal was originally pursued using the curvature scale
space (e.g. [1], [2], [3]), but because this space can not deal
well with wiggly curves, the approach was never developed
to its full potential. Instead, the methodology for point-to-
point (correspondence based) matching of curves was elab-
orated, for example for open (or closed) curves [4]; for shape
retrieval [5], [6] (closed curves); and for object recognition
[7], [8]. Correspondence-based matching is computationally
demanding, with O(N2) and O(N3) complexity for open and
closed curves, respectively (N=number of curve points), but
the method can be very accurate. Yet, for exact grouping
and hence construction of mid- or higher-level features, it
requires the precise detection and localization of ’elementary’
segments, e.g. approximate circular arcs and straight lines; and
it requires a precise estimation of the segment’s geometric
parameters.

The goal of curve abstraction is to find a compact repre-
sentation which is suitable for fast comparison of curves (in
particular the elementary segments), e.g. a low-dimensional
space in which curves can be compared by a mere distance
measure. For instance, Gorman et al. represent curve segments

by a few Fourier descriptors [9], which represents the desired
compactness, as matching in this case is reduced to O(K2d2)
complexity (K=number of segments; d=dimensionality; Kd
often < N ). There exists a number of other curve descriptions
based on polygons, e.g. the shape tree [5], the curve evolution
for closed curves [10]; or the one presented in McNeill and
Vijayakumar’s study [6], which also exploit a multi-resolution
’view’. These descriptions do not really represent an abstrac-
tion, as some of them do not really reduce information. But
all these approaches lack the possibility of part interpretation
(with exception of [10]), so do the above mentioned studies
pursuing correspondence-based matching.

Here we present methodology, which pursues both goals
using a novel multi-resolution space, namely an amplitude
space, where the amplitude is the distance between a selected
subsegment and its chord. The amplitude space allows a
precise localization of elementary segments and a characteri-
zation of the segment’s geometry, which is suitable for a low-
dimensional representation. The methodology was previously
introduced as part of an image classification study [11], but
rather in its infancy. Meanwhile it has matured and has also
been applied in video indexing [12], image retrieval [13],
gesture (posture) identification [14] ; here we add in particular
results from shape retrieval and classificaiton of land-use
satellite images.

A. Overview Methodology
To quicker introduce our methodology it is useful to men-

tion how the popular curvature scale space is generated: a
curve is repeatedly low-pass filtered and at each point in the
space the curvature is determined [1], [2], [15]. However,
the low-pass filtering operation represents a loss of structural
information which “smears” a corner’s precise position and
consequently does not permit proper discrimination between
’noisy’ shapes, e.g. between a jagged circle and a jagged
square. Related criticism was already given by Fischler and
Bolles and those researchers proposed an alternative space in
which a curve is systematically labeled for increasing window
sizes omitting the low-pass filtering operation [16]. We call
this the local/global space - as opposed to the fine/coarse scale
of the curvature scale space. The local/global (LG) space was
recently suggested again by Cremers’ group (subsection 4.1 in
[17]). The term multi-resolution space is sometimes associated
with the low-pass filtering operation, that is why we prefer the
term local/global space, which should strictly stand for varying
window size without any modification of the curve. In the LG
space, the amplitude (for a subsegment) is measured at each
point.
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Partitioning was typically understood as the segregation
(splitting) of curves at points of highest curvature into disjoint
sets [16], [1], [2]. We attempted to pursue this direction in our
previous study, but meanwhile we discovered that the resulting
segments were often not homologue across instances of the
same class (which we found out on the shapes of set B of the
MPG7 collection). By homologue we mean that the partitioned
segments are the same across instances despite the presence
of intra-class variability in structure, as it exists in the MPG7
classes. Here, we pursue a novel partitioning procedure that
focuses on the detection of curved arc segments (or simply
’arcs’). An arc is defined as an (approximate) circular arc or
a corner (L feature) of varying angle; any curve possesses
such arc types, unless it is just a straight line. We can detect
such segments relatively easy by analyzing the LG space along
the resolution axis and that results in much more homologue
partitioning.

To pursue abstraction, the space requires some form of
simplification from which global geometric attributes can
be derived (section IV). For that purpose, the LG space is
converted into various spectra, which capture the alternating
course of a curve (akin to the Fourier spectrum for sinusoidal
signal analysis). From those, a number of local and global
attributes are derived, which then are employed as components
of a low-dimensional vector. For these attributes a real value is
determined, in order to avoid a strong classification of curve
geometry. This prevents an ’early’ feature classification and
allows to build more flexible representations that can deal with
the structural variability (see also [11] for arguments).

In summary, for a given, unpartitioned, planar curve (open
or closed), the partitioning and abstraction process proceeds
as follows:

1) Generation of the LG space for a list of 2D coordinates.
2) Detection of (curved) arcs by analyzing the space along

the resolution axis.
3) Abstraction of arcs by selecting the corresponding sub-

space of the LG space generated in step 1 and by
manipulating it to derive a geometric characterization.

Sections II, III and IV correspond to these 3 steps. In section
V we report about the shape retrieval results.

II. THE LOCAL/GLOBAL SPACE

For the purpose of structural description, a planar curve
can be regarded as an alternating sequence of non-disjoint
arcs and inflexions (change of sign; transition): for instance a
wiggly (often natural) curve consists of an irregular alternation
of arcs and inflexions; an ’oscillating’ curve consists of an
even alternation; an arc or L feature consists of only a single
bow (with no inflexion). To detect this alternation (or lack
of), the curve is transformed with labeling (kernel) functions,
which identify bows and inflexions for different window sizes
(explained in subsection II-A). These transformations take
place on a curve (contour) that has been extracted as a list
of 2D coordinates {xi, yi}, i = 1, .., nCoord, but whose output
- a signature - is set in relation to the arc length variable v.
For a given window size, the labeling leads to a signature
(formalized in subsection II-B); for a bandwidth of window

sizes, this leads to the LG space (subsection II-C). We give
an example of an implementation of the space in subsection
II-D.

A. Labels
A (open) curve c(v) is transformed with three labeling

functions, the ’bowness’-, the inflexion- and the straightness-
labeling function. The bowness- and inflexion-labeling func-
tions are necessary to determine the exact course of the curve;
the straightness-labeling function is necessary to discriminate
between a straight segment and an alternating (’oscillating’)
segment.

A labeling function L selects a window of the curve,
determines whether the selected subsegment1 is of a certain
geometry and returns its magnitude. The bowness-labeling
function Lβ determines whether the subsegment is a bow -
and thus possibly part of an arc -, and returns its amplitude
as a magnitude measure. The term bow is specifically used
when referring to any bend outlined by a bowness block.
The inflexion-labeling function Lτ determines whether the
subsegment is an inflexion and returns also the amplitude.
The straightness-labeling function Lγ determines whether the
subsegment is sufficiently flat and returns a magnitude which
is proportional to the amplitude.

The amplitude is measured as follows (see also figure 1a
and b): given a subsegment s = [v1, v2] of fixed length ω, the
amplitude κ is defined as the maximal displacement between
the subsegment and the chord, normalized by ω. To determine
whether the subsegment is straight, one can define a maximal
amplitude value. But to discriminate between the bow and the
inflexion geometry, the course of the subsegment needs to be
analyzed more specifically. In principal this can be done by
determining the laterality of the subsegment in reference to the
chord: if all points lie on the same side, then the subsegment
is labeled bow; if the points of the first and second half of
the subsegment lie on opposite sides, then the subsegment is
labeled inflexion. Due to presence of irregularity and noise, it
is necessary to relax these laterality conditions and include a
certain tolerance T .

For the bowness label (figure 1a), this tolerance is includ-
ed by determining laterality for only a central part of the
subsegment, scen = [vc1, vc2], for which all points have to
lie exclusively on the same side of the chord, short-noted
as scen , [_]. The length of this central part represents the
tolerance Tβ : if Tβ is too large then the labeling is intolerant to
any noise; if Tβ is too small, the labeling is unspecific and does
not allow to find arcs. In addition to the laterality condition,
the amplitude κ requires a minimum displacement larger than
a threshold Sκ, otherwise the bowness-labeling function Lβ is
set to 0:

Lβ(s) =

{
κ , scen , [_]

⋂
κ > Sκ

0 , else.
(1)

To relax the laterality condition for the inflexion label Lτ ,
only a proportion Tτ (the tolerance) of each half is required

1In our previous publication we used the term segment for what is now
called more specifically the subsegment, because the term segment is also
used to refer to elementary curve segments.
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to lie on opposite sides of the chord. The inflexion condition
is now short-noted as (sh1 : sh2) , [∼], whereby sh1

and sh2 are the two segment halves (sh1 = [v1, vm] and
sh2 = [vm, v2]; see figure 1b). If the condition is true, then the
magnitude of the inflexion-labeling function Lτ corresponds
to the amplitude:

Lτ (s) =

{
κ , (sh1 : sh2) , [∼]

0 , else.
(2)

For the straightness label Lγ , the tolerance Tγ sets the
maximal allowable displacement, which is dependent on the
given window size ω. In addition, the straightness label is only
present, if at the same location no bowness label is present:

Lγ(s) =

{
Tγ−κ
Tγ

, κ < Tγ
⋂

Lβ = 0

0 , else.
(3)

The bowness and inflexion label are mutually exclusive, as
well as the bowness and straightness label; the inflexion and
straightness label can co-occur.
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Fig. 1. Labeling a subsegment of a window. The selected subsegment ranges
from v1 to v2. κ: maximal displacement (normalized by window size). a. For
the bowness label, the central part of the subsegment, [vc1, vc2], needs to lie
exclusively on one side of the chord. b. For the inflexion label, the first half
[v1, vm] and the second half [vm, v2] are required to lie on opposite sides
(vm= subsegment midpoint).

B. Signatures and Block Characterization

The labeling functions are shifted along the curve c(v)
returning the bowness, inflexion and straightness signature, β,
τ and γ. For instance for the bowness signature we have

β(v) = Lβ(s)c(v)dv, (4)

where s is - as defined above - the neighborhood (window) of
the labeling function of size ω; dv denotes the shift. The sig-
nature is set to zero for the boundaries where the chord cannot
be applied. The inflexion and straightness signatures,τ(v) and
γ(v), are generated analogously. All three signatures can be
called amplitude signatures.

An interval, where the signature has support, is now called
block or signature block. It is particularly the bowness block
(range denoted as vu), which is of interest. A block β(vu)
is geometrically characterized by a number of parameters,
which later are employed for partitioning and abstraction. Two
measures are taken:
• Circularity, ζu: is defined as the integral of the bowness

signature:

ζu =

∫ lu

0

β(vu)dv, (5)

which is an approximation because the signature block does
not span the entire outlined arc, but the computation of this
measure is fast.
• Edginess (angularity), εu: the measure allows to distin-

guish to what degree the block is a L feature or a circular
arc. It is determined by multiplying the derivate of β(vu) by
a normalized, ramp function r(vu), whose width is equal to
the block length (with center value equal 0):

εu =

∫ lu

0

β′(vu)r(vu)dv. (6)

The edginess value is largest for a L feature, it is 0 for a
circular arc and negative for a flat arc (e.g. the elongated half
of an ellipse). It would be sensible to separate the positive
and negative range and call the negative range the degree of
’flatness’ for instance.

A bowness block has a minimum length, set by a tolerance
Tlu , which depends on window size ω. This minimum length
is necessary because the above geometric description for very
short segments is meaningless and setting null values for the
geometric attributes would distort some of the spectra and
hence the abstraction.

C. The Complete LG Space

To generate the LG space, the above signatures are com-
puted for a set of window sizes, ω ∈ [ωmin, lc], with ωmin the
minimum window size and lc the total arc length of the curve:

B(ω, v), T(ω, v), Γ(ω, v), ω ∈ [ωmin, lc].

Because we will later also operate with the signature blocks,
in particular the bowness block space, we use

B(ω, v) for blocks u of B(ω, v),

and refer to those as the block space (for minimal-length
blocks only). When the individual block characteristics are
accessed, we refer to them as

Bζ(ω, v), Bε(ω, v),

for circularity and edginess. In analogy to the expression
’curvature’ scale space, one could call these spaces amplitude
scale spaces.
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Fig. 2. Local/global (LG) space for a complex shape. Top right: center point marked as gray (green) asterisk; detected arcs are outlined by their region
(shading ∝ ξu); squares denote elementary straight segments, which are placed at the segments’ midpoints. Left column: LG space: signatures β(v)
(black), τ(v) (grey) and γ(v) (stippled) for 14 different window sizes [sizes from 5 to 319 pixels; x-axis=arc length variable v]. The curve was extended
on each side by 210 pixels due to closeness. (Minimal-length) bowness block characteristics: (blue) triangle=εu (upward-pointing=positive value; down-ward
pointing=negative value); (green) diamond=υu; plus sign=ζu. Detected arcs are outlined with horizontal (dashed, magenta) line at ca y=0.4. Bottom plot
summarizes the degree of angularity (triangles) and the straight segments (squares) at y=0. Graph Φ: solid line, black circles=Φβ ; gray stars=Φτ ; dotted,
cyan squares=Φγ ; solid line, gray circles with black face=H(ω); dashed, x marker (blue): RΦ; red dashed, vertical line (at ω=5): Θjag. More Spectra: dotted,
black circle: maxv B; dotted, + marker: Z(ω). Partitioned: ’Summary’ of the detected arc segments (black=arc; gray=straight). Triangles and squares at
y=1.1 and y=1.3 represent angularity and straightness. Selected: An alternate ’summary’ which outlines the exact range of each detected arc by a horizontal
black bar (gray for straight segments). β, τ and γ, ε: space integrated along window (resolution) axis, bowness (black), transition (gray) [top panel]; edginess
(blue) and straightness (gray) [bottom panel]. Lower right panel: some attribute values.
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D. Implementation and Results
Window sizes were generated in increments of

√
2. The

subsegment was merely selected in pixel units for simplicity
and thus suffers from the aliasing problem. The smallest
window sizes were always ω = [5, 7, 9, 11, 13] for scale σ = 1
and ω = [5, 9, 13] for coarser scales; scale here refers to
the degree of image smoothing for the purpose of contour
extraction and has no relation to ω. The labeling tolerances
were Tβ = ω · 0.5, Tτ = ω · 0.25 and Tγ = ω · 0.05. Those
choices are not sensitive but systematic testing was not carried
out. Sκ was set to a low, fixed threshold,

√
(2)/2, to allow

the detection of wide circular arcs. Minimum block length
tolerance Tluwas set to ω/2 for the first half of the window
sizes (for a given LG space) and to ω/4 for the second half;
thus for larger windows the tolerance for accepting blocks is
higher.

The LG space for simple curve types (arc, inflexion and
wiggly) was already shown in the supplementary material in
[11] (figures 1-3 therein). The left column of figure 2 shows
the LG space for a complex MPG7 shape shown in the upper
right (shaded areas correspond to the consistency measure).

The computation of the LG space takes ca. 900ms for a typ-
ical silhouette of the MPG7 shape database (several hundred
pixels) on a 2.66 GHz Intel Pentium, implemented in Matlab,
whereby the amplitude signature is generated exploiting matrix
operations. For all the contours obtained from a gray-scale
image of size 200x300, the computation duration is only 100-
200ms as contours are typically shorter.

III. PARTITIONING

To understand how arcs can be detected, it is useful to
regard the space as a landscape surface. For an approximately
circular arc, e.g. a quarter circle, the surface describes an
increasing plane towards the global window level. If the
circular arc is embedded in a curve, for instance as in an
Ω shape, then the surface resembles a mound. For a semi-
turn (U or V feature) the surface describes a peak; for a
wiggly curve, the surface consists of irregularly placed narrow
mounds and small peaks. It is tempting to think that one could
discriminate between different arc types by constructing a two-
dimensional filter. But due to the large variety of possible
curve geometries, the partitioning operations should not rely
on predefined geometries. Instead, one merely determines the
change in amplitude along the window dimension (resolution
axis) and if it is small, then there exists an arc type. In other
words, arc detection intentionally lacks any specific geometric
filter in order to flexibly detect any arc type. The measure
of change is specified in subsection III-A and is called the
’consistency’ measure.

That only arc types are detected - and not arbitrary forms - is
guaranteed by the use of the laterality condition, scen , [_], in
equation 1. Arcs can be non-disjoint, e.g. an inflexion segment
consists of two overlapping arcs. Thus, instead of pursuing the
traditional strict segregation, the understanding of partitioning
here is that of a process that localizes non-disjoint partitions
(arcs) without segregating the curve.

In summary, an arc (segment) is thus more specifically
defined as a piece of curve, whose points lie on the same side

of the segment’s chord; it is approximately symmetric and can
consist of a wide range of geometries, for instance a L feature,
a circular arc or a semi-turn (U or V feature). Arcs with an
absolute amplitude larger than half the chord length are called
elongated (U or V shapes for instance).

Arc detection could be driven to the lowest possible res-
olution, that is until the smallest arc has been extracted. It
thus requires a stopping rule that terminates the partitioning
process because the generation of unnecessary small seg-
ments is a computational burden for the matching process
that is preferably avoided. The stopping rule would ideally
distinguish between jaggedness that is caused by noise (e.g.
imprecise edge detection or natural contours) and wiggliness
(or irregularity) that is characteristic to the category (e.g.
person’s silhouette contour, see figure 8 in [11]). In case of
jaggedness, the algorithm would stop; in case of wiggliness,
the algorithm would extract elementary segments that may
be useful for grouping. Such a decision is best made after
a perceptual organization and in combination with an analysis
of the spectra introduced in section IV. We therefore defer this
issue and assume for now that some jaggedness threshold Θjag
exists, which represents a window level (size).

A. Consistency

Consistency is determined by comparing the amplitude for a
given bow with the amplitude at adjacent levels observed along
the resolution axis. If no bows can be found at localer (more
local) and globaler (more global) levels at the same spatial
position, then the bow has zero consistency and is accidental
and part of a wiggly segment. The consistency is maximal
if the bowness signature is the same at localer and globaler
levels: it is then a part of an arc. Or expressed in bowness
space, the bow consistency ξu is inverse proportional to the
change within a limited interval [ωu − a, ωu + a] across the
window dimension, with ωu the window length (level) of the
selected block u:

ξu ∝

( v=lu∫
v=0

ωu+a∫
ωu−a

∂B(ω, v)

∂ω
dωdv

)−1

. (7)

The measure of bow consistency is not sufficient in itself
for reliable arc detection, because it can lead to an emphasis
of local bows in a jagged curve for instance. To avoid
the selection of such small arcs, the consistency measure is
correlated with block length lu and this new measure is called
the block energy ηu :

ηu = ξu · lu. (8)

The block energy measure captures the ’significance’ or con-
fidence of the block within the LG space; the more consistent
and longer the block, the larger the chance that it outlines a
distinct part of the structure. The energy space is abbreviated
as Bη .

A consistency measure for straightness is more difficult to
develop, because smooth curves are locally straight.
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B. Arc/Straighter Detection Algorithm

The arc detection procedure successively selects the bow
with the maximal energy value from Bη until the entire, unpar-
titioned curve has been checked for arcs, resulting in a list of
arc partitions Earc. For each selection, a corresponding neigh-
borhood (ωk, vk) in Bη is suppressed (set to 0). Selected bows,
whose window level is smaller than the jaggedness threshold
Θjag, are omitted. After all curved arcs have been analysed
(Bη = 0 everywhere), there may remain unpartitioned curve
segments, that typically are straight or wiggly, but that can
also be slightly curved. We call these segments straighter (list
denoted as E str), as they are straighter in comparison to their
adjacent, curved segments. In figure 2, the belly of the animal
is outlined by a slightly curved segment, which remained
after arc detection as straighter segment. Or exemplifying the
algorithm on the rectangle shape: after all four corners were
extracted, there remain the two longer sides (in this case truely
straight segments). As boundaries for the straighter segments,
we take the midpoints of the adjacent, detected arcs. We
summarize the algorithm as follows (algorithm 1):

Algorithm 1 Arc/straighter detection exploiting energy (block)
space Bη . See subsection IV for jaggedness threshold Θjag. vû
and ωû are the center of the detected arc.

-Input : Bη , Θjag
-Output : E seg {list of segment ranges}
Bη=0 for ω = ωmin and ω = ωlc ; {1st and last level to 0}
Bη=0 for ω where Φβ=1; {omitting circular arcs}
repeat

(ωû, vû)← argmaxω,vBη[ω, v];
ωk = [ωû − a, ωû + a];
vk = [vû − b, vû + b];
Bη[ωk, vk] = 0; {suppression}
if ωû < Θjag then continue; end
Earc = Earc+{vk}

until all Bη=0;
A(v) =

∑
Earc; {detect arc ’coverage’}

E str ← where A(v) = 0; {straighter where no arcs}
E seg = Earc + E str

The output of the algorithm is the combined list of arc
and straighter ranges (vk for each segment), meaning the
abstraction is the same for both types of extracted segments.

C. Implementation and Results

Bow consistency (equation 7) was implemented by merely
correlating the signed bowness signature of the next globaler
and localer window level:

ξu =
1

l2u

v=lu∑
v=1

sgn
[
B[ω − 1, v]

]
· sgn

[
B[ω + 1, v]

]
(9)

The suppressed neighborhood [ωk, vk] has a spatial width
equals the (detected maximum) block width (b = lu/2); the
window width was set with a = 2 (values larger or smaller
than 2 resulted in lower performance).

The shading of the bowness blocks (black silhouette) cor-
responds to the consistency value. For the two most global

window sizes (no. 13 and 14), no consistency was detected
and those bowness blocks have therefore a white face color.
The straightness label’s maximum is set to a value of 0.5 for
illustration purposes (to lower confusion with the other labels).

To visualize a detected arc, its region (closed by the arc’s
chord) is shaded (upper right graph of figure 2). Elongated
arcs are for instance the snout and tail of the animal shape.
An elongated arc can for instance be a V, U or half-rectangular
shape. As elongated we define if the (absolute) amplitude
exceeds the radius treating the arc segment as a circular arc.

The two center columns of figure 3 show the arc/straighter
detection output for some more shapes (left and right col-
umn respectively). (The shapes in that figure were selected
to demonstrate a variety of spectrum courses, see section
abstraction IV). Straighter segments are sometimes detected
in the center part of circular arcs that subtend a small angle.

The performance was verified on the entire MPG7 collection
(set B with 70 classes, 20 instances each, with each shape
being a closed silhouette). Figure 4 shows detected arcs for
some classes, whereby we selected preferably animal shapes
as they are more difficult to partition than simple geometric
shapes. Partitioning performance is largely homologue, but
there remains occasional lack of homology, such as the ’miss’
of detected arcs at a global level. For instance, the 4th face
(no. 684) in figure 4 lacks the detection of the forehead as a
whole (compare to others); the 4th turtle lacks the detection
of the back. These global ’dishomologies’ are caused by the
larger increments for more global window sizes (increment of√

2).
The results for all 1400 shapes can be found in the sup-

plementary material. The arc-detection procedure successfully
detects all spiral shapes (see class ’spring’, figure 2 in supple-
mentary material, row no. 64).

D. Discussion

The occasional global ’dishomologies’ may be avoided by
several, different measures. One measure could be the use of a
smaller increment, which however would increase computation
time. Another possibility is the development of an ’adaptive’
bow consistency measure that takes the increment into a
account, e.g. a suppression range ωk that is a function of
the increment. Lastly, partitioning may be optimized by a
perceptual grouping process, in which case it becomes rather
an issue of ’mid-level’ processing or shape recognition.

IV. ABSTRACTION

We nominally distinguish between global and local at-
tributes (subsections IV-B and IV-C, respectively). The global
attributes describe the curve geometry as a whole and so far
we have concentrated on three principal geometric types: arc,
inflexion and alternating, which correspond to a segment with
zero, one and multiple inflexion(s), respectively. These types
represent extrema in a continuum of different geometries, thus
segments are not classified into these types but are given a
graded value expressing the degree of these geometries; we
call this typification or typified. Type arc is found during the
arc detection loop (algorithm 1), but we exlcude elongated arcs
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Fig. 3. Spectra and detected arcs of some complex shapes. Left most column: Similar to graph Φ in previous figure: solid line, gray circles=Φβ ; solid
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Fig. 4. Arc detection in MPG7 shapes (row-wise: bat, bird, camel, carriage,
helicopter, face and turtle). A shaded region outlines an arc; the darkness of
the shading corresponds to the consistency measure (dark=consistent).

as the abstraction derived from the LG space is not suitable
for them (elongated shapes represent rather shapes). Types
inflexion and alternating are found with the straighter segment
detection step. The local attributes rather describe the fine
structure of a curve such as bendness, jaggedness, edginess
etc.

The abstraction is generated for the subspace as outlined by
the detected arc range. More specifically, for the list of seg-
ment ranges E seg, the abstraction is generated for the subspace
from the LG space of the unpartitioned segment given by each
range vk. If a range covers the entire unpartitioned curve - and
is thus a single arc or straight line -, then the entire space is
used (and no subspace is selected).

A first step towards abstraction is the creation of some
spectra, which are formed by integration along the arc length
variable. The spectra are necessary to derive some of the
geometric attributes and are therefore introduced first (sub-
section IV-A). Then, the definitions of the global and local
attributes are explained (subsection IV-B and IV-C). While the
definitions are intuitive given the way the LG space and the
spectra are built, it required substantial heuristic tuning for
some of the parameters, partly due to structural exceptions
like the spiral shape. Tuning was performed and verified

with a set of artificially generated curves (subsection IV-D,
see also supplementary material). To test the representation
performance on real (actual) curves, curve sorting (search) was
carried out (subsection IV-E), as well as shape retrieval, which
is reported in a separate section (V).

A. Spectra

A spectrum is generated by performing an operation along
the arc length dimension of the LG space, e.g. an integration
Q(ω) =

∫ v=lc
v=0

B(ω, v)dv. For each of the three spaces
(B, T, Γ) a spectrum is formed, also called fraction functions
(IV-A1), which allow already a typification of the curve’s
global geometry. To estimate in particular the alternating
characteristics, two alternating spectra are formed (IV-A2), the
ratio function and the energy spectrum, which can be loosely
understood as frequency spectra.

1) Fraction Functions: They are called such, because their
spectrum is normalized by the curve length,

Φβ(ω) =
1

lc

∫ lc

0

B(ω, v)dv, (10)

as an example for the bowness fraction function. The inflexion-
fraction function is formed and labeled analogously: Φτ (ω).
The course of the fraction functions differs as follows (see
also figures 1-3 in supplementary material of [11]). For
an arc, Φβ increases with increasing window size, whereas
Φτ decreases; the rate of increase and decrease depends on the
degree of smoothness (or ’wiggliness’) of the arc. For a curve
consisting of a single inflexion, the course of the bowness-
and inflexion-fraction function is reversed (Φβ decreasing,
Φτ increasing). For an irregular (wiggly) curve, the bowness-
fraction function describes a bump with its maximum located
at a medium window level, whereas the maximum for the
inflexion-fraction function occurs at a higher level. Thus, the
course of the fraction functions expresses the global curve
geometry and is suitable for defining the global attributes
(subsection IV-B).

2) Alternating Spectra: The two spectra allow to estimate
a jaggedness threshold and the extent of alternation, on a
local and global level. Initially, we intended to do this with
a single spectrum only, but eventually developed two spectra,
the ratio function RΦ and the energy spectrum H . Each one
has benefits.

The ratio function is built from the ratio of the inflexion and
bowness fraction functions. Firstly a simple ratio ρ is generated
for those values of the inflexion fraction function, that are
smaller than the values of the bowness fraction function, as
an emphasis of the bowness ’behavior’ is sought:

ρ(ω) =

{
Φτ (ω)/Φβ(ω) ,Φτ (ω) < Φβ(ω)

1 , else.

The simple ratio is then directly weighted by the bowness
fraction function to form the actual ratio RΦ:

RΦ(ω) = ρ(ω)Φβ(ω). (11)

The ratio RΦ can be a multimodal function. If the curve
is aliased, due to the use of a simple edge-detection and
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extraction algorithm for instance, then the first mode reflects
the aliasing noise. If the curve is alternating such as in a
sinusoidal or in a natural, wiggly curve, then the second
mode (or first mode when no aliasing present) reflects the
’actual’ frequency respectively. For complex shapes, there
can be more than two modes, which are not necessarily
clearly distinguishable. The first mode of the ratio function
is abbreviated as,

RΦ
max1 =

1
max
ω

RΦ(ω) (12)

and will be later used for determining attributes jaggedness
and alternating.

The location of the alternating mode depends on the al-
ternating frequency. For a frequently alternating curve, the
mode occurs at a lower window level; vice versa, for a slowly
undulating curve, the mode occurs at a higher window level.
The amplitude depends on the extent of alternation at that
window level: for instance a segment, that contains only a
piecewise high-frequency alternation, has a mode occurring at
a lower window level and with lower amplitude. The ratio
function is used to estimate the amount of alternation at
a global and local level (attributes alternate and jaggedness
respectively).

The second alternating spectrum, the energy spectrum
H(ω), is generated by integrating the energy values:

H(ω) =

∫ lc

0

Bη(ω, v)dv. (13)

The energy spectrum can also be multimodal, but we found
that it allows to estimate a jaggedness threshold better than the
ratio function, because the first mode seems to appear more
distinct and more appropriately located than the first mode
of the ratio function (neither too close to 0 nor too large).
The jaggedness Θjag threshold is defined slightly different
depending on the number of modes:

Θjag =

{
min

(
argmax1

ωH(ω),Θupp
jag

)
, H is unimodal

min
(
argmin1

ωH(ω),Θupp
jag

)
, else.

(14)

If unimodal, then the window size of the first (local) maximum
is taken, unless it is larger than an upper threshold , Θupp

jag =
lc/8, where the value 8 represents the minimum number of
cycles (for fewer cycles one would interpret the curve rather
as alternating). If H is multimodal, then the window size of
the first (local) minimum is chosen.

A consistency spectrum alone is limitedly meaningful be-
cause it can be dominated by jaggedness such that other modes
are difficult to detect.

3) Implementation and Results: Φ is determined as the
fraction of signature values that are above 0 for each window
size,

Φβ [ω] =
1

lc

v=lc∑
v=1

sgn
[
B[ω, v]

]
, (15)

as an example for the bowness-fraction function.
The two graphs in the center of the right column of figure 2

display the spectra. The graph labeled Φ contains the bowness-
, transition- and straightness-fraction functions as well as the
ratio function RΦand the energy spectrum H(ω).

The left column of figure 3 shows the spectra of a set of
shapes that produce relatively different spectra. The jagged,
hexagonal star shape (row 2) generates a bimodal energy
spectrum (solid circles), whose modes are distinct, of which
the first mode clearly reflects jaggedness. The ratio function
(x) and the inflexion fraction function (gray) also reflect
the jaggedness, but we found that their modes were not as
distinct and hence easily separable than the ones in the energy
spectrum.

B. Global Attributes

• Arc, a: a curve is typified as arc if its bowness-fraction
function has a value larger zero for the largest window size
(lc):

a = Φβ(lc). (16)

As stated previously, the typification occurs not only for
circular arcs, but also for L features or polygons that appear
as approximately circular.
• Transition, t: analogously to the arc attribute, a curve

is typified as inflexion (transition), if its inflexion-fraction
function has a value larger zero for the largest window size:

t = Φτ (lc). (17)

• Alternating, w: the default value for w is equal to the
transition value. If the curve is a perfect arc (a=1), then the
first mode of the ratio function is taken (eq. 12). If the global
curve is not a perfect arc (a <1) and shows a minimum value
for the ratio function, then the value is determined as follows:
the window level ωosc is selected where the count of bowness
blocks is largest (nωosc

u ) and its logarithm was taken:

w =


RΦ

max1 , a = 1

log (nωosc
u ) , a < 1 ∪ RΦ

max1 > 0.02

t , else.
(18)

• Circularity, ζ: this attribute allows to express full circles,
which the bendness attribute (eq. 20) cannot distinctively
capture as it also describes the amplitude of an alternating
curve. It is defined as the maximum of the circularity space,

ζ =

{
maxω,v Bζ(ω, v) , a > 0

0 , else,
(19)

because we assume that not more than one circular arc is
present (in a partitioned curve), that subtends and angle
of more than 180 degrees. A maximum operation should
therefore suffice. Since the spectrum was generated with a
maximum operation already, the value is equal the global
maximum circularity value of all bowness blocks.

Case Spiral: a spiral (or G) shape shows the following
characteristics. 1) Its bowness fraction function increases to a
value of one (or nearly one) and then decreases again, because
it represents an alternating curve at a very global level. 2)
The bowness signature block gradually decreases (toward one
curve end). These characteristics can be easily detected. The
spiral’s global parameter values are adjusted as follows: a =
1; w = maxω R

Φ(ωh1), with ωh1 being the first half of the
spectrum; ζ = maxω,v Bζ(ω, v).
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C. Local Attributes

The local parameters are determined using the bowness
block parameters (subsection II-B) and the spectra introduced
in IV-A. One parameter describes the overall bendness of the
curve, which can also be regarded as a global parameter in
case the global geometry is of type arc: but it is a rather local
attribute when the global type is transition or alternating. The
jaggedness attribute represents the alternating characteristic at
a very local level.
• Bendness, b: this attribute was somewhat misleadingly

called ’curvature’ in our previous study. It is essentially the
normalized amplitude and approximates thus the degree of
turn. It has two separate definitions, one for non-perfect arcs
(a < 1) with a minimum amount of jaggedness (RΦ

max1 >0.02)
and one for remaining curves:

b =

{
1
lc

∫
ω

(
Φβ(ω) + Φτ (ω)

)
dω , a < 1 ∪ RΦ

max1 > 0.02

maxv B[lc, v] , else.
(20)

The minimum jaggedness avoids that a too large bendness
value is generated for oblique straight lines that suffer from
aliasing. We had also attempted to define a bendness value,
that was obtained from the global part of the space, but the
definition tended to neglect high-frequency alternations.
• Edginess (angularity), e: this attribute allows to discrim-

inate between smoothly undulating and zigzag. It is defined
as in our previous study, namely as the average 〈〉 of all
edginess values for all bowness blocks Bε in the entire space:
e = 〈Bε(ω, v)〉.
• Jaggedness, j: estimates the alternating characteristic at

a local level. If the curve has been globally typified as of
type arc, the value equals the alternating value w (defined
above). Otherwise a very local interval of the ratio function is
integrated:

j =

{
w , a > 0∫ ωloc

ωmin
RΦ(ω)dω , else.

(21)

D. Implementation and Verification

For the jaggedness attribute, the local interval ωloc was set
to lc/15. Attribute values were normalized to unit range [0,1],
when they were not defined within that range already.

A vector is formed with attributes as introduced above,
c(o, l, a, w, ζ, b, e, i, j), where o and l are the curve’s orien-
tation (o) and the total arc length (l = lc) - the transition
attribute was not used here; i is the symmetry attribute as
introduced in our previous study [11].

1) Verification: To facilitate and verify the tuning of param-
eters and definitions, a set of artificially generated test curves
was used (see supplementary material). The coordinates of
most test curves are quantized to integers in order to under-
stand the effects of potential noise. Some curve coordinates
are real-valued and those serve as a control.

The rotation of curves revealed that the amplitude of the
bowness signature can be very high at lowest window levels.
We refer to the supplementary material for details.

One could attempt to compensate for the irregularities
caused by aliasing (such as the window length measured in
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Fig. 5. Sorting curve vectors along different dimensions (attributes). In each
row one dimension value was systematically increased (the found and not the
preset value is displayed in the upper right of each graph). Top row: increasing
(inc.) bendness value for an arc. 2nd row: inc. b for an angular arc (e = 1);
3rd row: inc. irregularity (symmetry; here y = i) for an arc. 4th row: inc.
b for an alternating curve. 5th row: inc. b for an angular alternating curve
(e = 1). 6th row: inc. w. 7th row: inc. irregularity (y = i) for an alternating
curve. 8th row: inc. circularity.

pixel units), e.g. by using a look-up table, but this may only
be necessary if high accuracy is required as for instance in an
identification task.

The computation time for partitioning and abstraction takes
ca. 400ms for a typical silhouette contour of the MPG7 shape
database (2.66 GHz), thus less than half the duration for the
generation of the LG space.

E. Results

The attributes were tested with curve sorting (retrieval),
which follows now, and by looking at knock-out performance
for a classification task, which follows in section VI.

Curves are sorted by searching for systematically preset
values in contours obtained from gray-scale images (a). To
demonstrate the effect of the jaggedness attribute individually,
a sorting on the MPG7 collection was carried out as well.

a) Preset: Sorting were carried out with contours obtained
from images of the COREL collection, specifically from 30
or more images for each of the 112 basic-level categories
(10710 images in total). Images were only 128x192 in size,
since this is the typical size used in our studies [11]. The
vectors were sorted (retrieved) along individual dimensions
(attributes), which is shown row-wise in figure 5. For each row,
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a ’base’ geometry was manually selected and one dimension
was increased in five increments. For each increment the
most similar (least distant) curve was selected and plotted.
The corresponding dimension value of the found vector is
given in the upper right of each graph. This search does
not guarantee the optimal selection for two reasons: one is
the limited amount of curve geometries in a database; the
other is the presence of multiple dimensions in the distance
measure. To counteract the latter, the weights for the base
geometry were set to a low value, whereas the weights for the
incrementing dimension was set high (vice versa for the radial-
basis function). Still, for some selections an actual increment
cannot be found, see for instance the second row, in which
two times the same segment appears.

In the top row, an arc was selected as base geometry (e.g.
a=1, w=0) and the bendness dimension was systematically
increased from 0 to 1 (increment of 0.2). The bendness value
of the most similar curve is noted in the upper right and
corresponds to the unnormalized value, ranging from 0.15 to
0.93 in this case. In the second row, an attempt was made
to select arcs with a high angularity (e=1), that is selections
that are most similar to an L feature or an (open) 3-segment
polygon (forming an arc). In the 3rd row, the irregularity
(symmetry) value for an arc was changed, which selected
’distorted’ arcs initially and more even arcs for higher values.
In the 4th row, the bendness value for an alternating curve
is increased, resulting in selections that range from straight
line to an undulating curve. The last curve is an example of
insufficient partitioning (undetected semi-turn) due to the use
of subsampled window sizes. In the 5th row, the bendness
value for an alternating curve with high angularity (e=1) was
increased, moving so toward a zigzag line. In the 6th row, the
alternating value itself was increased. In the 7th and 8th row,
the symmetry value and the circularity was increased.

See also supplementary material for an alternative way of
visualizing the continuity of the multi-dimensional space.
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Fig. 6. Jaggedness values (sorted) for the MPG7 shapes. Ca. 12 shapes show
a high degree of jaggedness, then the values drop sharply.

b) Jaggedness: The effect of the jaggedness attribute is
specifically demonstrated by sorting all 1400 MPG7 shapes
according to their degree of jaggedness. Figure 6 displays the
sorted distribution of the jaggedness values, whereby only one
jaggedness value for the unpartitioned, closed shape curve is
determined - the value is thus to be interpreted as a global
measure in this case. A few shapes show a high degree of
jaggedness, the majority has a value smaller than 0.35. The
shapes with the largest and smallest values are shown in figure
7, in the top three and bottom three rows respectively.
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Fig. 7. Most/least jagged shapes (taken from sorting in figure 6). Most
jagged shapes in top 3 rows - grayscale value of curve is (approximatively)
proportional to jaggedness value; least jagged shapes in bottom 3 rows.

V. SHAPE RETRIEVAL

Shape matching systems for arbitrary shape retrieval use
either point-based and/or segment-based matching methods.
By point-based is meant the exhaustive point-to-point corre-
spondence matching. Point-based matching is the prevailing
matching principle and can be exploited for either aligning
and/or for discriminating between two shapes, e.g. [18], [4],
[19], [20], [21], [22], [23], [24], [25], [26], [27], [28]. Al-
though powerful descriptions exist meanwhile for this type of
matching, there are a number of short-comings associated with
it:

1) Lack or limited robustness to fragmentation: the systems
often require that the shape is a closed curve and they can
therefore not be easily applied to gray-scale images, where
shapes appear mostly fragmented due to ’noise’.

2) Lack of part interpretability: the systems often cannot
identify shape parts and their relations, which however would
be essential for manipulating the shapes (e.g. a robot trying to
understand shapes for interacting with them).

3) Long matching duration: point-to-point measurements
are inherently time-consuming; their algorithmic complexity
is square O(N2), and if a closed curve is tested, it is of cubic
complexity O(N3) (N=number points).

There are attempts to alleviate those problems. For in-
stance, Ghosh and Petkov [29] have pleaded for testing shape
recognition systems with fragmented shapes and presented
the incomplete-contour representation (ICR) test; their own
solution appears to be robust, but remains a point-based
recognition system. Schmidt et al. [30] have developed an op-
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timized point-based matching procedure, specifically a faster
minimization method to find the proper global alignment
of two shapes. Or one can use feature points (landmarks)
to reduce the number of alignment matchings. Still, those
attempts cannot truly shake off the above limitations.

Segment-based matching systems extract boundary seg-
ments, which are individually matched amongst two shapes (or
between a shape instance and a category representation in case
of classification). This is in principle a step toward escaping
the shortcomings of point-based matching, but many segment-
based matching systems remain footed in the former. For
instance, Latecki and Lakamper introduced a curve evolution
which provides a good degree of part interpretability; their
segment similarity measure is based on relating curvepoints
[10]. Felzenszwalb and Schwartz’s system is robust to frag-
mentation and was shown to work on contours obtained from
gray-scale images [5]; their curve comparison also remains
a point-to-point matching. Daliri and Torre’s shape matching
system uses point-to-point matching only for aligning two
shapes, after which then the shape is divided into segments
of equal lengths, which in turn are transformed into a sym-
bolic representation by classifying the segments into 32 types
made of four discretized radii and eight angles [24]. McNeill
and Vijayakumar’s system intentionally refrains from feature
extraction and thus is not suitable for part interpretation [6].

Some segment-based systems are devoid of any point
matching. The recognition system by Attalla and Siy uses a
polygonal description, specifically arcs of equal length [31].
For each arc a small number of attributes is determined: the
arc’s chord length, its degree of curvature and its distance
from the shape center. The latter attribute represents a radial
description of the shape. The system however also relies on
the shape being closed. And because segments are of equal
length, a part interpretation is not possible and the shape
description lies in some sense between point- and segment-
based matching. The complexity of the system is O(N) only
and thus clearly less complex than any point matching system;
it is possibly the most efficient shape recognition system with
respect to the speed/accuracy tradeoff.

Some of the mentioned systems are summarized in table
I. The 1st column (’Perf.’) denotes the retrieval score for
the MPG7 shape database (set B with 1400 silhouettes, 20
instances per 70 classes; [32]). The 2nd column denotes the
(principal) complexity and is sometimes estimated by us, as
not all studies report an explicit algorithmic estimation. The
5th column (’Part Int’) uses a simple rating to denote whether
a system permits part interpretation of the analysed shape. The
6th column, represents a binary robustness ’rating’, whereby a
plus sign indicates when a system has been shown to perform
also on shapes in gray-scale images. Clearly, all the systems
have their advantages and disadvantages.

a) Distance Optimization.: Recently, efforts went into
postprocessing (optimizing) the distance matrix (that is gen-
erated for pairwise retrieval). The postprocessing is a type
of unsupervised learning, that seeks to decrease the distances
between similar shapes - and thus within-class distances -, and
to increase the distance between dissimilar classes - and thus
extra-class distances. This learning comes in different forms,

e.g. [33], [34], [35], [36]. There exist two notable optimization
algorithms. One is the page-rank related algorithm by Bai
et al. [35], which improved Ling and Jacobs’ popular inner-
distance description [23] by 6.21 percent. Bai et al.’s method
is simple to implement as it essentially consists of a single
recursive equation, and it appears to be applicable to different
tasks [35]. The other optimization algorithm is based on a
modified mutual graph method, by Kontschieder et al. [34].
Their method is more complex (and thus we employed their
software package2), but improved the inner-distance descrip-
tion by 8 percent. It appears more efficient for the task of
distance matrix optimization and reports also much shorter
optimization duration. We later distinguish between geometric
and optimized distance matrix or retrieval performance, with
the former as obtained without any learning (optimization),
and the latter with learning (see also the horizontal division
in table I).

We also evaluate our curve description methodology on the
MPG7 database using analogous types of matching as the
ones mentioned above. One is a space matching (subsection
V-A), which would correspond to point-to-point correspon-
dence matching. Another one is segment matching, which
exploits the segment abstractions with parameters as developed
in the previous section, whereby a simple radial description
is employed to relate segments (subsection V-B). Finally, we
also combine the analysis of the two methods, which gives
us the best retrieval results on the MPG7 collection (section
V-C). For each method we also apply an optimization of the
distance matrix; thus in total we provide 6 entries to table I
(in bold face).

A. Space Matching

The type of point-based matching that we carried out, is
most similar to the matching system by Adamek and O’Connor
and also analogous to curvature-scale space matching [22],
[20]. Adamek and O’Connor create a fine/coarse scale space
from which they derive convexity/concavity (later collectively
called bulginess) by determining the spatial relation between
low-pass filtered curves; they determine shape similarity by
matching the signed inter-curve distance spaces and by ex-
ploiting dynamic programming to find the minimum distance.
The method presented here matches the amplitude scale space.
To avoid cubic matching complexity we reduce the exhaustive
alignment search by using keypoints. The keypoints are ob-
tained by partitioning the curve as discussed (section III) and
use the midpoints of the partitioned segments as keypoints
as those correspond to high- or low-curvature points. The
segments are not used otherwise in this matching method.

1) Implementation: For each silhouette, 100 equally spaced
points were selected and the bowness space B was generated
with 10 window sizes. For matching, the space was regarded
as a 1000-dimensional vector; the difference between two
shapes i and j was implemented with the Manhattan distance:
dB
ij =

∑
ω,v |B

i − Bj |. A partitioned shape offered in average
20 keypoints (that is segments, see also section V-B). Due to
various types of variability (structural, aliasing), the keypoints

2http://vh.icg.tugraz.at/index.php?content=topics/beyondshape.php
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TABLE I
RETRIEVAL SYSTEMS, THEIR BULL’S EYE SCORE (FOR THE MPG7 COLLECTION) AND THEIR CHARACTERISTICS. TYPE: GEOMETRIC ONLY (NO

OPTIMIZATION); OPTIMIZED: DISTANCE MATRIX TUNED BY LEARNING ALGORITHM. UNIT: PT=POINT, SEG=SEGMENT.
PRINCIPAL:LGS=LOCAL/GLOBAL SPACE (THIS STUDY), ID=INNER DISTANCE (INCL. SHAPE CONTEXT). PART INT: PART INTERPRETABILITY.

ROBUSTNESS: GRAY-SCALE APPLICABILITY.

T Perf. Complexity Unit Principal Part Int R Authors

O
pt

im
iz

ed

95.96% O(N3) pt ID, Aspect + Ling etal,10
95.01% O(N3) pt/seg LGS, segment vectors +++ combined [proposed]
93.40% O(N3) pt ID, modified mutual graph + Kontschieder etal,09
93.32% O(N3) pt ID, LCDP, uns GP + Yang etal,09
91.61% O(N3) pt ID Bai etal,10
91.03% O(N3) pt LGS +++ space matching
85.08% O(N) seg segment vectors +++ + segment matching

G
eo

m
et

ri
c

O
nl

y

89.31% O(N3) pt contour flexibility Xu etal,09
87.70% O(N3) pt/seg hierarchical multi-resolution + Felzenszwalb&Schwartz,07
85.40% O(N3) pt ID (inner distance) + Ling&Jacobs,07
84.93% O(N3) pt multi-scale convexity/concavity Adamek&OConnor,04
84.80% O(N3) pt/seg LGS, segment vectors +++ combined [proposed]
84.33% O(N) pt-seg equal-length segments; radial Attalla&Siy,05
81.12% O(N3) pt curvature scale space ++ Mokhtarian&Bober,03
78.74% O(N3) pt LGS +++ space matching
78.38% O(N3) pt distance sets + Grigorescu&Petkov,03
76.45% O(N)/O(N2) seg/pt parts + Latecki&Lakamper,00
70.48% O(N) seg segment vectors +++ + segment matching

are not at exactly the same locations (for shape instances of
one class), causing a decrease in performance in comparison
to exhaustive point-based matching. To compensate for this
variability, the neighboring points around the keypoints were
used for alignment as well: by dilating 2 pixels, the average
number of keypoints increased to 30 (some segments overlap
due to the use of selected window lengths), which returned
a reasonable approximation to an (estimated) full matching.
The algorithmic complexity is thus less than cubic, O(< N3).
The resulting distance matrix between two shapes is of size
m×n, with m and n being the number of keypoints for each
shape. A dynamic programming approach did not make sense
and we simply took the minimum value of the entire distance
matrix. Matching duration with 30 keypoints (along v) was
ca. 80 milliseconds for a pair of shapes on a 2.66 GHz Intel
Pentium.

2) Evaluation: For each shape, the remaining 1399 shapes
were ordered according to their increasing distance. Retrieval
accuracy was measured with the Bull’s eye score, which
counts the number of same-class instances within the first 40
most similar shapes (including self-similarity). This count is
determined for all 1400 shape retrievals, summed and divided
by the maximal possible count, namely 28000 (1400*20; [32]).

The geometric Bull’s eye score is 78.74 percent, see ’space
matching’ in table 1. Increasing the resolution to 200 points
for instance, only marginally increased the performance by ca.
1-2 percent.

The optimized score with the modified-mutual graph
method is 91.03 percent (a gain of 12.29), with kNN=12 for
local scaling normalization, kNN=6 and c=3.5 for the graph.
The class-individual gain can be up to 50 percent; it is slightly
negative for some classes and larger for another (figure 8,
upper right).

The optimized score with the page-ranking related algorithm
is 88.36 percent (a gain of 9.62), with kNN=15 and α=0.4 for
local scaling normalization. As results with this method were

consistently lower by a few percent than the modified-mutual
graph method - as can be assumed from the comparison of
the two methods on the inner-distance method - they are no
longer reported here and only results with the modified-mutual
graph method are given from now on.
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Fig. 8. Optimization Analysis. Upper left: Precision/Recall curves for
geometric and optimized combination of space and segment matching; ID-
SC: inner-distance (& shape context) by [23]; ASC+LCDP by [36]. Class-
individual gain for space matching (upper right), for segment matching
(lower right) and the difference in gain between space and segment matching
(lower left).

3) Discussion: The geometric retrieval accuracy lies in
the range of other respectable shape recognition systems, but
lies significantly under Adamek and O’Connor’s system per-
formance (84.93%), probably because their system elegantly
exploits concavity and convexity information [22], which we
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were not able to exploit.
The increase in resolution (to gain higher performance)

is not worth the square increase in matching duration. The
observation that 100 points provide a sufficient recognition
performance was also observed in Attalla and Siy’s study [31].

B. Segment Matching

The shape curve was partitioned and abstracted exactly as
discussed in sections III and IV. The partitioned segments are
related to each other using a simple radial description. The
pole was determined by taking the average of all shape pixel
coordinates. The segments were related by three parameters:
the (normalized) radius r and two types of ’orientation’ angles.
The two angles correspond to curved segments (arcs) and
straight segments: for curved segments we determine the
degree of bulginess, which represents convexity and concavity;
for straight segments, we determine a tangentiality value.

Pc

a btangentiality bulginess

1

2

Pc

1

3

2

3

Fig. 9. Two angles for a radial description (pc=pole). a. Tangentiality
angle for straight segments: segments 1 and 3 have the same tangentiality
and are maximal (π); segment 2 shows minimal tangentiality. b. Bulginess
(directional) angle for curved (bent) segments; segment 1 is maximally
concave; segment 2 shows no bulginess - it is neither convex nor concave;
segment 3 is maximally convex.

• Tangentiality (θ): is the (smaller) angle of the intersection
of the straight segment and the radial line connecting the shape
center (pc) and the segment’s midpoint (gray dashed in figure
9a). Maximal tangentiality is therefore a right angle (segments
no. 1 and 3 in figure 9); minimal tangentiality (θ=0) occurs if
the segment’s chord aligns (parallel) with the radial line (seg-
ment no. 2). A segment is considered straight if its bendness
value is below a tolerance T θb : ∃ θi ∈ [0, π2 ] ai(b) < T θb .
• Bulginess (δ): is the angular difference between two

direction angles (both ∈ [0, 2π]). One directional angle is the
face angle φ obtained from the ray pointing from a segment’s
midpoint to its own halfpoint (the midpoint of a segment’s
chord) - the dotted arrow pointing ’north’ from a segment’s
midpoint in figure 9b. The other directional angle is the ray
pointing from the pole to the segment’s midpoint (dashed in
figure). The angular difference lies in the interval [0, π]; convex
segments have a bulginess value in the interval [0, π2 ), concave
segments a value in the interval (π2 , π], a value δ=π2 means
neither convex nor or concave (segment 2 in figure 9b).
Maximal convexity and concavity are the interval’s endpoints
(0 and π, respectively, segments 1 and 3 in figure 9b). The

bulginess angle is determined if the segment was detected as
an arc (Φβ(lc) > 0): ∃ δi ∈ [0, π] Φβ(lc) > 0.

Elongated arcs were included as well and in order to
characterize those segments a bit more specific, a attribute
p was added that corresponded to the ratio of amplitude and
chord length. Together with the above three components, the
vector is now: c(θ, l, a, b, e, ζ, t, p, r, δ), that is including the
transition attributes, but omitting the jaggedness and alter-
nating attributes as they did not contribute to an improved
retrieval performance.
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Fig. 10. Retrieval score (for segment matching) for varying factors with which
the variance for individual attributes was multiplied. Attribute transition (7 trs)
appears to have the least impact as it steadily increases.

1) Implementation and Evaluation:
a) List Matching: To match the list vectors of two

shapes, the segment vectors are pairwise matched to form a
similarity matrix from which the segments’ best matches are
selected and integrated. The similarity measure is called con-
gruence measure in this study, as no scale (size) independence
is included (the MPG7 collection shows little if any intra-class
size variations).

Given two lists of segments, ai and aj from shapes A
and B, the pair-wise (metric) similarities sim(a, a′) of the
individual vectors are taken, resulting in a [n×m] similarity
matrix, S = [simij ], with n and m being the list lengths.
The similarity measure sim can be further refined by a weight
vector v(i), whose components correspond to the significance
of the attributes. Next, the maximum with respect to each
shape is taken, returning a congruence vector g,

gA(i) = max
j

S[i, j], (22)

gB(j) = max
i

S[i, j]. (23)

A weighted sum of the individual components is taken, with
the weights w corresponding to the segments’ significances
and acting as a normalizer. The final congruence value is a
multiplication of the weighted sum of both shapes:

cong = g′AwA × g′BwB . (24)

The complete congruence measure is summarized as
congkl(ai, aj , v,wA,wB), with v as the attribute weight vector
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with dimensionality equal the number of attributes (parameter-
s), w as the segment weights with dimensionality correspond-
ing to the list lengths (n and m), and k and l two shapes.

b) Complexity: An informal complexity estimate is pro-
vided. The most time consuming part is the generation of
the local/global (scale) space for partitioning and abstraction,
which is analogously complex as creating the curvature scale
space, thus O(N logN).

As the partitioned segments are merely a list of parameters
and selected coordinates (end- and midpoints), the segment-
matching duration is 2.8 milliseconds only and thus negligible
as compared to the duration of generating the local/global
space (next paragraph).

2) Implementation: No subsampling occurred, meaning the
full size of the silhouette was employed. T θb was set to 0.4.
The similarity metric for two vectors (sim) is determined
using a Gaussian radial-basis function, whose variance for the
individual dimension is set to their overall variance of the
entire collection (vector v). As mentioned previously, all three
steps (LG space, partitioning and abstraction) take ca. 1300ms
on a 2.66 GHz Intel Pentium.

3) Evaluation: The geometric retrieval score is at ca. 67
percent for unitary attribute weights v. A simple heuristic
search was employed to optimize the weights, which increased
the performance to 70.48 percent (see figure 10). The search
was carried out by multiplying the (average) variance of the
radial-basis function with varying factor values (x-axis in
figure 10). The transition attribute appeared to have the least
effect on the retrieval score, as it monotonically increased with
factor size. Matching duration was ca. 20 times shorter than
the one for space matching.

Exploiting distance optimization (modified mutual graph),
the score rises to 85.08 percent, a gain of 14.60 percent (with
kNN=20 for local scaling normalization, kNN=6 and c=2.5 for
the graph). The class-individual gain in Bull’s eye score can be
more than 50 percent, and is negative for only one class (figure
8, lower right). To analyze more specifically the differences
in class-individual gain for the two matching methods, we
subtract the two sets of gain values (pairwise) and observe
that there can be significant differences for some classes (plot
in lower left in figure 8).

4) Discussion: The geometric retrieval score is rather low,
but this type of matching is also the first of its kind: only
abstracted (parameterized) segments are used and no particular
dependence on the closeness of the shape exists. A possible
reason for the relatively low performance may be that a radial
alignment is structurally too simple for shape description.
Further improvement may be obtained by grouping segments.
The class-individual gain analysis in figure 8 shows that
the two matching methods favor different classes and that
encourages us to combine the matching methods.

C. Combined Matching

The combination of the two methods comes at little ad-
ditional temporal cost, since the processes of segment parti-
tioning, abstraction and matching occur relatively rapid. And
it comes at little increase in storage size, with 22 segments

in average per shape and 10 attributes for a vector c, which
increases the dimensionality to 1220 (1000 from the space).

1) Implementation and Evaluation: The combination oc-
curs by adding the two distance measures for each method for
a pair of shapes (dcomb = dB

ij+congij). The geometric score is
84.80 percent and is thus in the range of other top-performing
systems (see ’combined’ in table I). The precision-recall curve
for this retrieval is shown in the upper left of figure 8: it is
practically equal to the one for the inner distance description
(IDSC).

Applying the distance optimization method (modified mu-
tual graph), the score rises to 93.71 percent. We also tested
a combination after individual optimization, that is the opti-
mized distance matrices for each method are added (dcomb =
dB,opt
ij + congoptij ), then the score is marginally higher with

93.89 percent. Applying the optimization algorithm again to
that combined matrix, we obtain 95.01 percent (gain of only
1.12 percent), which is the second best reported so far. The
precision-recall curve for that latter combination is shown in
figure 8 (upper left) and is practically equal with the one of
the optimized aspect space description (dotted) [36].

This last combination thus consists of three optimizations
in total, which however given the temporal efficiency of the
modified mutual graph algorithm are negligible. The downside
of this combination is rather that it lacks the robustness to
gray-scale images, but its advantage of part interpretability
remains.

2) Discussion: The combined retrieval performance
(84.80%) is only 4.5% below the present benchmark of
geometric scores (89.31% by [26]). The score with distance
optimization (95.01%) is the second best reported so far to
our knowledge (95.96% by [36]).

D. Discussion

Recent studies emphasize in particular the need for invari-
ance to articulation (part alignment variability), e.g. [26], [36],
[27]. In those studies, the problem was formulated as a tradeoff
or balance between an increased articulation invariance and
a decrease in class discriminability. In our description, this
issue of balance was not particularly addressed. Instead, the
presented description is a rather detailed description, in which
articulation is expressed by a segment characterization - it
is parameterized essentially. Thus, the potential problem that
arises with such a detailed description is that it may be too
detailed and lead to intra-class clusters, which deteriorates
discrimination. Further analysis may give more clues about the
exact nature of the representation, but presently the increase
in discriminability appears to be elegantly provided by the
distance optimization methods.

The distance optimization with the modified mutual graph
method yielded higher gains in our work (12.29, 14.60 and ca.
10.0 percent for space, segment and combined matching) as
opposed to the 8 percent increase in Kontschieder et al’s study
[34]. There are two possible reasons for this higher gain:

1) Starting with a lower geometric score - as in case of space
and segment at least - allows more room for improvement, as
opposed to a geometric score that is high already.
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2) The local/global description bears a better separation be-
tween classes. As Ling et al. already assume, the crucial issue
is that the geometric distance measure provides an overall good
separation between perceptually dissimilar classes - even if the
geometric score is only mediocre in comparison to some other
systems (see their section 4 in [36]).

VI. IMAGE CLASSIFICATION AND RETRIEVAL

Systems for image classification are typically evaluated on
either a database with fixed number of categories, e.g.[37],
[38], [39], or in classification and retrieval competitions where
the number of categories grows each year, e.g.[40]. We applied
our method to both types of databases.

Of the fixed-categories collections, there are three notable
ones, the Urban &Natural collection [38] and the Caltech101
[37]. The Urban&Natural collection contains 8 super-ordinate
categories (mountain scene, forest scene, street scene, highway
scene,...) and were classified with 80 percent correct using a
modified Fourier transform as preprocessing [38]. The Cal-
tech101 collection contains mostly objects in close-up view
(football, ying-yang sign, accordeon,...), some are embedded in
a scene (e.g. cheetahs, anchors); they were correctly classified
with roughly 70 percent by different methods (see figure 6 in
[41] for a summary). The Landuse collection consist of satel-
lite images depicting 21 categories [39] (street intersections,
forest, agricultural fields,...) and were correctly classified with
ca. 81 percent by a bag-of-features approach, with features
being SIFT features [39].

Of the classification and retrieval competitions, we par-
ticipated in particular in the image retrieval task, where the
dominant method is the extraction and matching of gradient
histograms of fixed-size intensity patches, such as the widely
used SIFT features and their modification [42].

Using our preprocessing, we applied two types of classifi-
cation so far: a simple statistical one using only image vectors
(subsection VI-A); and an ensemble classifier exploiting the
multi-dimensional space of the individual descriptor vectors
(subsection VI-B).

A. Image Vector Classification

1) Implementation: Contours were extracted with the Can-
ny algorithm and then processed exactly the same way as
was done for shape retrieval, that is LG space generation,
partitioning and abstraction were not modified or adjusted at
all. Contours were extracted from four different spatial scales,
which returned an abundance of contours and we therefore
discarded strongly overlapping segments. An average image
contained several hundred segments. For each partitioned
contour we extracted a number of appearance parameters
(contrast, fuzziness,...), which were based on simple luminance
statistics, see [11] for details.

Our reported, best-performing classification results also de-
pended on other descriptor types, which describe for instance
grouping, region or texture information, but describing these
descriptors here would exceed the scope of the present study.

For a list of descriptors ai(d) we generated a 10-bin
histogram Hd for each attribute d (d = 1, .., nDim, number of

dimensions). The attribute histograms were then concatenated
to form a high-dimensional image vector HI , whose length
could be several hundred components. Thus, there is no use
of the multi-dimensionality of the vector space per se; the his-
togram is a mere statistical description of the curve attributes
present in an image. The principal component analysis (PCA)
was used to optimize the separability between categories. A
linear discriminant analysis (LDA) worked best on the image
vectors.

2) Evaluation: With a 6-fold cross validation we reached
76 percent correct classification for the Urban&Natural collec-
tion, 77 percent for the Landuse collection and 40 percent for
the Caltech101 collection. In the ImageClef competition, we
reached the middle of the ranking of all submitted approaches,
in one task we reached the top third [13].

The significance of individual attributes was estimated by
knocking out individual attributes in the statistical classifica-
tion task. For an attribute knock-out, the corresponding 10
bins were eliminated. To provide a meaningful reference, a
classification performance with only the segment descriptor
was determined as well (horizontal, solid line figure 11;
dashed lines are standard error for 6 folds), which is lower
than the best-performing results just mentioned. A knock-
out performance below or above that reference value stands
for a more or less significant attribute. The significance for
individual attributes varies between image collections. For
instance, the circularity attribute plays a more important role
in the Caltech and the Urban&Natural collection (performance
lower) than in the Corel collection (performance higher).

3) Discussion: Classification with mere image vectors was
relatively competitive: the benchmark for the Urban&Natural
collection was reached already. The knock-out experiments
show that the significance can vary substantially between
collections and one could attempt to employ a feature selection
procedure.

B. Ensemble Classification

In an ensemble classifier the decision is based on several
weak classifiers - as opposed to a single ’strong’ classifier
as in the LDA for example. To learn the weak classifiers
we apply the adaptive boosting method, which specifically
concentrates on the misclassified examples in the training set
and learns associated weights in a systematic way [43], [44].
Viola and Jones introduced this methodology to the computer
vision community with their rapid face detection system [45].
They specifically used single-node decision trees (decision
stumps) as weak classifiers, but applying such decision stumps
to individual dimensions did not yield good performance in our
case. Instead we used a pooled decision of the decision stumps
for individual dimensions. We firstly explain the classifier we
built and then the boosting (learning) procedure we used.

a) Classifier: Given a single entry v of a descriptor
vector a (from list ai), the decision stump evaluates whether
the value lies on the correct side of a certain threshold θ

t(v, p, θ) =

{
1 , v > pθ

0 , otherwise,
(25)
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Fig. 11. Attribute significance estimated with dimension knock-out for a sta-
tistical classification task (top to bottom: Caltech101, Corel, Urban&Natural
and MPG7 collection). bnd=b; eds=e.

whereby p stands for the polarity of the inequality. θ and p are
adjusted during learning by seeking the optimal discrimination
between one category k and all others. We then integrate the
stump outcomes across dimensions to arrive at a descriptor
activation value h,

h(a,p,Θ) =

nDim∑
d=1

t
(
a(d),p(d),Θ(d)

)
, (26)

where Θ(d) can be regarded as an hyperplane separating one
category from all others, p(d) is the array of polarities. For a
category, a number of hyperplanes nL is determined and their
activation values integrated and weighted to form a descriptor
confidence value c

c(a,pl,Θl) =

nL∑
l=1

h(a,pl,Θl)w(l), (27)

whereby weights w are normalized to one,
∑
l w(l) = 1. This

integration corresponds to the so-called strong classifier in
the terminology of ensemble classifiers. The posterior for a
category is calculated as the mean confidence value of all nDesc
descriptors of an image,

P =

nDesc∑
i=1

c(ai,pl,Θl)/nDesc. (28)

We used two types of classification. One is used during
learning, which occurs by taking the maximum value across
the posterior values argmaxkPk. Another one is used during
classification of the validation set: we found that using the
posterior values for each category and descriptor type (seg-
ment, pair, texture,...) as input to the LDA yielded substantially

better performance; to clarify, the length of the ’feature’ vector
for classification was the number of descriptor types times the
number of categories V = {P s1 , P s2 , .., P snK

, P p1 , P
p
2 , .., P

p
nK
, ...}

(s=segment, p=pair, etc.). This means that how an image
responded to other category representations was valuable in-
formation to obtain better discrimination.

b) Adaptive Boosting: In the adaptive boosting learning
procedure, a sample is reused in a weighted manner according
to the evolving classification performance during training. In
our case, we adjust a descriptor weight s(i) (significance)
after each learning round. The weight is included when we
determine the optimal threshold θ and polarity p: t takes
the value of s(i) instead of only 1 in equation 25 - if the
value lies on the right side of the inequality. Once an optimal
threshold and polarity is found, the threshold values t are
integrated across dimensions and descriptors (for a category)
and that determines weight w(l). After each learning step l, the
descriptor weights s(i) of misclassified images are adjusted by
increasing their value by a small amount.

1) Evaluation: With ca. 10 learning steps (hyperplanes, nL),
we obtained a classification performance of ca. 82 percent for
the Urban&Natural collection - for fewer or more learning
steps the performance decreased. The optimal dimensionality
for V consisted of 22 dimensions - after application of the
PCA. For the Landuse collection we used ca. 15 learning
steps and an optimal dimensionality of ca. 56 dimensions
to achieve a correct classification of 79 percent. For the
Caltech101 collection we used ca. 20 learning steps and an
optimal dimensionality of ca. 150 components to achieve a
correct classification of ca. 49 percent.

2) Discussion: The classification benchmark for the Ur-
ban&Natural collection was just exceeded; the one for the
Landuse almost reached; the one for the Caltech101 collection
however was not reached yet. Nevertheless, the potential of our
new methodology is evident.

C. Discussion

The use of the image vector resulted in relatively good
performance, that is the mere curve statistics of an image
contain valuable information; it represents a fast method as
learning duration and classification is short. The use of the
ensemble classifier yielded better performance, but it also
requires time to learn the hyperplanes. We believe that even
better performance can be achieved, if we built a classifier
exploiting individual descriptor vectors.

VII. GENERAL DISCUSSION AND SUMMARY

The key to homologue (class-consistent) partitioning is a
procedure, which detects consistent bows in the amplitude
space, allowing so to the robust identification of arcs. Partition-
ing is not completely homologue at a global level (figure 4),
but better partitioning is more likely obtained with a perceptual
organization (grouping) of the abstracted segments. Neverthe-
less, when tested with a radial description, the retrieval score
for the MPG7 rate is at ca. 70 percent. If the distance measure
is combined with a traditional correspondence-based matching
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method, the retrieval score becomes comparable to best-
performing systems. In image retrieval we obtained competi-
tive results using only an image vector. In image classification
we were able to exceed the benchmark for the Urban&Natural
collection with an ensemble classifier. The curve description
methodology is thus applicable to any database and while
we have not yet outperformed the prevailing SIFT features
and its variants [42], our curve methodology in turn offers in
principle precise scene interpretation - whereas SIFT features
do not. The challenges ahead are proper grouping algorithms
and novel learning methodology.

The most time consuming part of the method is the gen-
eration of the LG space, whose complexity is O(NLW )
approximately, with N the number of segment points, L the
number of window levels (dependent on N ), W the amount of
computation for window labeling. Partitioning and abstraction
depend on N and L only and take thus much less time in
comparison.

The attributes and their definition can be taken as examples.
The attributes jaggedness and alternating can play a role in
gray-scale images (figure 11), whereas for shape retrieval in
the MPG7 collection they were hardly useful. In another study,
we have shown that we also reached the benchmark for the
Urban&Natural collection (under review; see also figure 11),
thus the methodology can be applied in gray-scale images
without modification, that is, it works on fragment contour
images equally well.

Whether the stopping criterion is sufficient for classification
remains to be further tested. The dilemma is that jagged-
ness may not always be ’noise’, instead there may exist
characteristic segments of approximate similar frequency, that
need to be extracted for proper recognition; or, the presently
chosen threshold may be too low for some other curves, e.g.
discriminating a square from a complex animal shape does not
require detailed partitioning even if the square is jagged (e.g.
contains a dent). Thus, the stopping rule is ideally set using
the results of a perceptual organization or by semantic content.
In other words, optimal partitioning is probably not possible
without the use of semantic content (e.g. the corresponding
shape class), very much like the task of image segmentation.

There are other recognition tasks where our methodology
could be applied:

a) Identification: For curve identification tasks, such as in
[46], [47], the present abstraction may not be sufficient. But
the local/global space is a rich description from which more
specific characterizations can be dervied. For instance, the
parameterization of a signature block could be extended, by
determining its degree of ’flatness’ or its degree of distortion
(asymmetry) to one side. Another possibility is to use a
finer subsampling of window sizes. With the output of the
arc/straighter detection algorithm (E seg), one could construct
abstractions of (open) polygons, specifically a sequence of
three segments. Such abstractions could be in particularly
useful to represent symmetric alignments in polygon curves.

b) Grouping for segmentation: The majority of grouping
studies uses computationally expensive point-based matchings
[48], but the relatively detailed detection and characterization
of arc segments with our method would allow to generate a

number of ’arc hypotheses’ with which segmentation could be
accelerated.
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