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Abstract

We propose a neural architecture that estimates the speed of motion. The basis is a two-dimensional map made of locally connected
integrate-and-fire neurons, that propagates and integrates synaptic input in a dendritic-cable-like manner, but irrespective of any
direction. The propagation dynamics of such a map are tuned to filter preferred speeds: slow map dynamics filter slow speeds, fast map
dynamics filter fast speeds. The propagation map is potentially simple enough for an analog hardware approach.
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1. Introduction

Biophysical models of motion detection generally aim at
explaining the mechanism for direction selectivity. One line of
models pursues to explain direction selectivity by the
sequential stimulation of excitatory and inhibitory synapses,
whose spatial input order corresponds to the preferred
stimulus direction. For example, if an excitatory synapse is
stimulated first, followed by an inhibitory synaptic stimula-
tion, the cell fires because the delayed inhibitory stimulation
was not able to block the excitatory input. Stimulation in the
opposite direction in turn would trigger inhibition first, which
would block a following excitatory input. Such synaptic
interplays can be summarized as synaptic logic [12] and may
be employed by biological visual systems to compute
direction selectivity in insects [22] and vertebrate [1] in one
way or the other. A variant of this delay-and-compare scheme
is synaptic integration in a dendritic branch [17]: if synaptic
input is subsequently placed along a dendritic cable towards
the soma, it will result in a gradually increasing wave that
reaches the spiking threshold in the soma. Placement of
synaptic input into the opposite direction—away from the
soma—does not cause spiking. Such dendritic integration
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may also be employed by the nervous system (e.g. [13]). Less
effort has been invested into inventing biophysical models
that estimate the speed of object motion.

An alternative system was suggested by Glaser and
Barch, who model motion detection on a map level [9].
They introduced the idea of an excitable neuronal array in
which neurons are locally connected. When such a map is
stimulated with a motion stimulus it leaves behind a
characteristic wave propagation pattern. Some of these
propagation patterns can explain certain types of motion
illusions. In such maps, a motion of the same direction but
different speed triggers different propagation patterns.
What this line of studies has not addressed yet, is how
direction and speed can be explicitly represented and read
out in a simple neuronal way: what would be the specific
mechanism that could distinguish between two directions
or two speeds? We address this question here for the issue
of speed estimation only. Our intuition is that one can
obtain different speed estimates by using multiple maps
with different dynamics, or more figurally speaking, maps
with different viscosity. Fast map dynamics (short-time
constants) would be used for detecting high speeds, slow
map dynamics (long-time constants) would be used for low
speeds. To signal the presence of a certain speed, the
corresponding map would generate spikes. In other words,
the combined firing of the entire map, the population
signal, would signal the presence of a specific speed.
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Glaser and Barch’s propagation map consists of ‘con-
tinuous’ neurons and does not possess the ability to deliver
the envisioned population output. We therefore introduce a
spiking propagation map, which we also have used in for
other visual tasks [18,20]. Synaptic input placed into such a
propagation map, will spread to all directions and decay in
amplitude similar to the propagation properties of synaptic
input in a dendritic cable. Sequential synaptic input along
any direction will gradually integrate and eventually reach
the spiking threshold and therefore cause spiking. In order
to differentiate between various speeds, the map’s dy-
namics are adjusted correspondingly to filter only a certain
speed or range of speeds. An important advantage of such
maps is, that speed estimation is independent of direction.
That is, the tedious placement of direction-selective cables
or the spatial arrangement of synapses falls away.
Summarized roughly, these types of propagation maps
embody Rall’s delay-and-compare scheme but irrespective
of motion direction.

The remainder of the study aims at confirming our
intuition of the speed-detecting propagation map with a
simple software simulation, whereby we take an engineer-
ing viewpoint. We imagine a system in which a silicon
retina (e.g. [2,14]), provides the input to such propagation
maps in form of pulses (presynaptic spikes). The neuronal
dynamics of the propagation map are chosen such that
they resemble dynamics of neuronal, analog hardware
[4,14]. In the discussion section, biophysical evidence is
cited that may point towards the existence of such
propagation maps in cortex.

2. Methods

A propagation map is a two-dimensional sheet of
neurons, each horizontally connecting to its eight neigh-
bors (Fig. 1). A neuron is modeled as a leaky integrate-and-
fire unit, consisting of a single capacitance integrating the
charge delivered by its synaptic input or horizontal
connections, a spike-generating mechanism with fixed
voltage threshold triggering a spike, a switch resetting the
membrane potential when a spike is occurring, and a
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Fig. 1. Circuit diagram of the propagation map. Two connected units of
integrate-and-fire type are shown. Vy (V(c41)): neuronal voltage. Cm:
membrane capacitance. Sw: switch. Spk: spike generating mechanism. L:
(constant) leakage conductance. Ry; horizontal resistance. Ip,: external
input (e.g. motion).
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leakage conductance [12]. Integrate-and-fire units have
been implemented into aVLSI in various forms (e.g. [14]).
Instead of simulating the current and voltage dynamics
explicitly, we merely model one variable corresponding to
the membrane potential, the voltage V', of the neuron.
When synaptic input drives V" above the spiking threshold,
V' is set to a maximum value, En,—interpreted as the
reversal potential for sodium, shortly thereafter V is set to
a minimum value, Ex—interpreted as the reversal potential
for potassium. The synaptic input from a neighboring
neuron is proportional to the voltage difference between
the pre- and post-synaptic neuron and can be interpreted as
a resistor or conductance. The leakage conductance is
chosen to be fixed and can be implemented with a single
transistor.

Below the spiking threshold the neuronal voltage is
governed by the following equation. The neuronal voltage
V' at location (x,y), at its next step, ¢+ 1, is given by its
present potential plus the input of its neighboring neurons
via the horizontal connections, I;(¢), inhibitory input from
its neighbors, I;(?), external motion input, /,,(¢), and a
constant leakage L,

Vix,y,t+1) = V(x,p,0 + In() — Ii(t) — L+ In(?)
for V< Vines; V =0 for V'<O0. (1)

Iy, is the sum of positive membrane differences multiplied
by the horizontal (or axial) conductance, g, = (1/Ry), for
each of its 8 neighboring neurons:

8
In@) =) max[gy(Vi(1) = V(1)), 0], )
k=1

where V is the voltage of the neighboring neurons. When
V exceeds the spiking threshold, Vs, a spike of duration
ds is triggered, followed by resetting V' to ground (Ex). A
horizontal resistor can be implemented in analog hardware
in various ways, but in connection with a spiking unit, a
switch-capacitor method is preferred [6,21]. The simulated
dynamics of the present system are closest to a silicon
dendrite implementation [21].

During a spike, a neuron will substantially contribute to
its neighboring neurons and raise their activity level
promptly. This may trigger rapidly growing, excessive
spiking in the entire map. One could try to find the narrow
parameter space in which that would not occur, but that
would lead to intricate tuning. Rather, one introduces a
stabilizing mechanism. We have chosen surround inhibi-
tion: when a neuron spikes it inhibits its neighboring
neurons via inhibitory synapses. We express that as the
neuron in question (Eq. (1)) receiving inhibitory input from
its 8 neighbors whenever they spike:

8
Ii(t) = Z Sk(D4;, (3)
=
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where Sy (7) is the binarized spiking output of each neighbor-
ing neuron (S(x,y, 1) =[1if V(x,y,)> Vinres, 0 otherwise]),
Aj is the constant amplitude of the inhibitory synapse.

The external motion input, I,(#), consists of spikes,
Sm(?), multiplied by a synaptic amplitude A.. Spikes are
assumed to be triggered by motion-sensitive cells in a retina
or maybe lower visual cortical area. 4. is the constant
amplitude of the excitatory input synapse. During a motion
stimulus, the activated synapses are stimulated only once
(sequentially) and we sometimes refer to the resulting
postsynaptic responses as EPSP drops. The dynamics of
any postsynaptic response—whether 4; or A.—is chosen to
be merely pulse-shaped with a duration of one time step.

We have chosen some parameter values in accordance to
voltage values in analog VLSI circuits for reason of
familiarity [5], but the values possess no specific unit. En,
and Ex are set to 5 and 0, respectively. The spiking
threshold is set to be 2.0. The simulation time step is 0.2
and can be interpreted as milliseconds. The spike duration
lasts one time step (a value of 0.2).

Ten speeds were use to test the propagation map: 0.03
(slowest) to 0.3 (fastest) in steps of 0.03. The corresponding
time intervals are 33.3,16.6,...,3.7 and 3.3 (1/speed in
simulation units). Five different parameter sets were
created to demonstrate the speed-selective characteristics
of the maps, whose dynamics range from ‘very fast’,
detecting only very fast motion stimulation, down to ‘very
slow’, detecting only very slow motion stimulation:

gn = 0.80; L =0.25; 4; =2.2; A. = 0.5 (very fast),
g = 0.50; L =0.20; 4; =1.5; 4. = 0.5 (fast),

gn = 0.12; L =0.08; 4; =0.0; 4. = 0.6 (medium),
gy, = 0.05; L =0.01; 4; =0.7; A. = 0.6 (slow),

gn = 0.02; L =0.01; 4; =0.6; A. = 0.7 (very slow).

The parameter values were found as follows. Firstly, we
determined two extreme dynamics, ‘very fast’ versus ‘very
slow’, which caused spiking only for the extreme speeds,
number 1 and 10, respectively. The intermediate dynamics
(fast, medium and slow) were then intuitively interpolated
requiring only little tuning effort (a few trials). The tuning
of the ¢, and L values is explained in the 1st paragraph of
the result section. The value 4; was found by increasing it
until it would prevent excessive spiking for all speeds. 4; is
higher for faster maps because they can easier derail due to
their swift dynamics. The value for the medium map is 0,
because we have accidentally found a stable parameter
space, in which surround inhibition is not required. The
value for 4. was adjusted such, that it would trigger
spiking with at least the 10th EPSP drop for a preferred
speed. A, is required to be higher for slower maps,
otherwise the spiking threshold would never be reached
for the given other parameters.

Speed is then signaled as follows: an approximate speed
is signaled by the presence of spikes in a certain map. A
specific speed is signaled by the number of spikes in the
entire map across a certain period of stimulation.

3. Results

The map’s propagation properties are analogous to the
propagation properties of a dendritic cable disregarding
the directionality of the cable. Changing the axial
conductance, gy, will primarily change the distance with
which a signal spreads: a high value results in far spread, a
low value in short spread, or put more formally, a high-
and low-space constant, respectively. Changing the axial
conductance also affects the decay time constant but to a
smaller extent though: a high value causes a faster decay of
activity at a given neuronal unit, whereas a low value
causes a slower decay. Changing the amount of leakage, L,
will primarily modulate the decay time constant: a low
value results in a slow decay, whereas a high value results in
a fast decay, or a long- and short-time constant,
respectively. It will secondarily affect the space constant:
a low leakage causes farther spread, a high leakage causes
shorter spread. The detailed dynamics are highly non-linear
due to the constant leakage term we have chosen, and are
thus not quantitatively comparable to a perfect resistor-
capacitor cable or map (see e.g. [14]).

In order to detect different speeds the above parameters
are adjusted correspondingly. To detect fast speeds the
axial conductance is set to a high value to allow for quick
and far spread, resulting only in synaptic integration when
there is a rapid sequence of EPSP drops. To avoid an
integration of low speeds the leakage is set high. To
detect slow speeds the reverse applies: a low value for the
axial conductance avoids the fast run-away of activity and
only slowly transmits activity to neighboring units.
Additionally, the leakage conductance is set to a small
value in order to give slow motion stimulation a chance to
integrate.

We firstly examine the propagation and spiking char-
acteristics of a 10 x 20 map in response to a moving dot
stimulus. Fig. 2 visualizes the subthreshold propagation
properties of two differently tuned maps. The dot wanders
from left to right, from column number 2 to column
number 17, at row number 5, triggering a single EPSP in
each neuronal unit. The entire motion is shown in the
upper left subplot of Fig. 2 as a line of stars. For an
optimal stimulation the EPSPs gradually raise the sub-
threshold membrane potential, whose dynamics resemble
an increasing, wandering mound. The upper two plots
show the response of a dynamically fast map (parameter set
‘very fast’) in response to a fast-motion stimulation: the
stimulation occurs at time steps ¢t = 1,4,9, 11 and so on; the
four plots show the map activity at time steps t =2,5,9
and 12. The lower two plots show the response of a
dynamically slow map (parameter set ‘very slow’) in
response to a slow-motion stimulation: the stimulation
occurs at time steps ¢t = 1,34,68,101 and so on; the four
plots show the map activity at time steps ¢ = 2, 35, 69, 102.
In this case, the 4th stimulation leads already to a spike (see
black dot in ‘map’; the spike dynamics are cut off for the
‘Xsect’” diagram).
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Fig. 2. Propagation properties of a map (10 x 20 neurons) in response to a moving dot [Y (row) = 5, X (column) = 2,3,..., 17, see stars in upper left

subplot]. Upper two rows of plots: dynamically fast map, EPSP drops at = 1,4,9 and 11 (speed number 10), map’s response shown at t = 2,5,9 and 12.
Lower two rows of plots: dynamically slow map, EPSP drops at # = 1, 34,68 and 101 (speed number 1), map’s response shown at z = 2, 35,69 and 102. The
map shows the subthreshold activity in gray-scale values. “Xsect’ shows a cross-section of the map at row number 5 (where stimulation occurs), only the

subthreshold range (0..2) is shown.

Fig. 3 plots the spike occurrences for three differently
tuned maps (fast, medium and slow) in response to
different dot-stimuli speeds. The X-axis represents time in
simulation units, the Y-axis represents the column co-
ordinates of the spike occurrences (for row number 5). The
motion stimulus is the same as before and is illustrated in
this plot as a line connecting its EPSP drops. It starts at
column number 2 and time step 1, and it ends at column
number 17 and at a time unit that depends on the speed.

For the fast map, only speed numbers 8-10 caused
spiking. Speed number 8 caused merely one spike after the
15th EPSP drop, which is marked with a single diamond.
Speed number 9 triggered spiking after the 10th EPSP drop
and then spiked 4 times with irregular intervals (4
diamonds connected by a line). For speed number 10
spiking started even earlier, namely after the 8th EPSP
drop. For the medium map spiking occurred for speed
numbers 4-8, with early onset of map spiking for speed
number 5, and later onset for the other speeds. After onset

of spiking spikes are triggered with every EPSP drop except
for speed number 4. For the slow map speed numbers 1-6
caused spiking. Speed number 2 and 3 caused an early
onset of map spiking. Spiking occurred only intermittent in
comparison to the EPSP drops, which is partially due to a
strong surround inhibition (high 4;).

A maps response was also tested with an arrow-shaped
form, consisting of 5 dots pointing towards the right side
(equivalent to a ‘>’ sign). Fig. 4 shows spike plots, in
which the map’s spike occurrences are indicated by their
gray-scale value, with bright and dark dots corresponding
to early and late in time. No subthreshold activity is shown
in this plot as opposed to the previous figure, which
emphasized the subthreshold activity.

For the fast map there was only spiking for speed
numbers 8-10, as there was for the dot stimulus. For the
medium map however, there was spiking for more speeds
(numbers 3-10) than for the dot stimulus, because the
multiple EPSP drops of a shape add up. This has not such a
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Fig. 3. Map spiking in response to the moving-dot stimulation for different speeds. Y-axis: x-coordinate (horizontal position) on propagation map. X-
axis: time in simulation units. The input motion is described by a straight line. The map’s spike occurrences are marked as diamonds connected by a line.
Note that the time-axis scale for each map is different. Speed is detected and estimated by the presence and number of spikes, respectively. The plots
visualize the gradual build up of activity, an increasing mound wandering to the right.

marked effect for the fast map, because the fast
dynamics swallow the multiple EPSP drops easier. The
response of the medium map to the fastest speed (number
10) does not actually reflect the shape form itself, but
shows the summation from the neighboring shape dots
sitting in the diagonal (each arrow ‘wing’ has three dots
giving rise to two units receiving that type of summation).
At lower speed it is the shape itself that determines the
spike pattern. At medium speeds it is a mixture of both.
For the slow map the map responded to every speed. At the
highest, non-preferred speed the map spiked merely
occasionally, at the slowest, preferred speed there was
abundant spiking.

Fig. 5 shows the speed preference for each map for both
motion stimulations, the dot and the arrow stimulation.
The total number of spikes for an entire motion stimulus is
plotted as a function of speed. We call these curves now
speed-tuning curves. For the fast map both speed-tuning
curves start at speed number 8 and increase with higher
speeds. The curve of the arrow stimulation is higher due to
the larger size of the stimulus. For the medium map the
tuning curve for the dot starts at speed number 4 and ends
at speed number 8 forming a bump. For the arrow
stimulation the tuning curve covers a broader range of
speeds, starting at speed number 3 and showing signs of
decrease at speed numbers 9 and 10. For the slow map the
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Fig. 4. Map spiking in response to a moving arrow shape (shape indicated in upper left subplot with asterisks) for three dynamically different maps (fast,
medium and slow) and three different speeds. All spike occurrences are plotted into the map (10 x 20), with bright and dark dots representing early and
late spiking, respectively (no subthreshold activity is shown). Fast map: response to speed numbers 10, 9 and 8 is shown. Medium map: response to speed
numbers 10, 5 and 3 is shown. Slow map: response to speed numbers 10, 5 and 1 is shown. Reprinted with permission from Springer, Rasche 2005.

tuning curve for the dot covers the lower speeds (numbers
10-6) declining from low speeds to higher speeds, whereas
the arrow stimulation covers the entire speed range, but
also declining towards higher speeds. In summary, for the
fast map one obtains a sharp tuning curve, which is less
influenced by the number of input spikes (the shape size),
for slower maps, the tuning curve broadens and does so
even more when the shape size increases.

4. Discussion

The speed-tuning curves in Fig. 5 demonstrate that a
propagation map captures a range of speeds, which is
narrow for faster maps and broader for slower maps. Such
curves thus allow only for a rough estimate of speed. In
order to determine speed accurately, one could possibly use
more maps and try to achieve a narrow tuning for each
one, which however would likely result in a tuning ordeal.
Yet, a better solution may be the employment of a pyramid
that contained multiple layers with the same neuronal
dynamics but receiving differently intermittent input from
lower levels. A low level would receive input with small

intervals and be sensitive to low speeds. Higher levels
would receive only sparse input (large intervals) and
therefore only detect high speeds. Such a ‘speed-pyramid’
would less depend on the need for different neuronal
dynamics (see chapter 8 of [20] for a graphical illustration).
In either case, the creation of a set of maps to cover all
speeds is size-costly. Instead, it is more size efficient and
even more accurate to create a set of neuron that read out a
few tuning curves. For example, a neuron tuned for a
specific speed, would read the ratio of firing rates from two
or more maps, analogous to the formation of color
sensation from only 3 photoreceptors with different
luminance sensitivities. With such a neuronal readout,
speeds could be determined much more accurately, despite
the broad tuning-curves.

4.1. Steps towards an analog hardware approach

The purpose of the present study aimed at outlining an
architecture that has the potential for an analog hardware
implementation. As front-end, we envision a silicon retina
that continuously generates pulses in response to any
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Fig. 5. Speed-tuning curves for each map (fast, medium, slow) for the dot (dashed—dotted lines) and arrow (solid lines) stimulation. X -axis: total number
of occurred spikes for the entire stimulation, which represents the estimated speed. Y-axis: speed number. Reprinted with permission from Springer,

Rasche 2005.

motion stimulus (e.g. [2,14]). These pulses would then be
fed into the propagation maps. The silicon retina generates
contours in response to motion stimulation by shapes. The
simulation with the arrow (Fig. 4) was chosen to
demonstrate that the propagation map also operates
correctly with multiple, simultaneously appearing synaptic
input that would derive from such contours.

To approach a transfer of the present architecture into
analog hardware, it required firstly the proper design and
analysis of the individual components, and then another
round of software-simulations to determine the fine-tuning
between the components. For the development of the
suggested system the first step would be the construction of
a propagation map. The present propagation map, with
octagonal connectivity, is actually simulated with an Eq.
(2) that emulates unidirectional flow of a resistor, because
the octagonal connectivity with bidirectional resistors tends
to generate unstable wave propagation [19]. It remains to
be seen whether the presently simulated map could be
implemented in analog hardware. An alternative would be
to employ a hexagonal grid, for which implementations
already exist (e.g. [2,14]). But those would have to be
extended to make them functioning with spiking units. One
may try to emulate the resistive network with switched
capacitors, which have been used for emulating dendritic
processing [6,21]. Switched capacitors however, depend on
a fast clock which is digital circuitry rendering the
approach rather a mixed analog—digital implementation.
Still, this seems to us the most promising starting point to

develop a 2D map showing the here presented, required
dynamics. There are however limitations to the possible
range of dynamics that can be emulated with these
switched-capacitor circuits, in particular slow dynamics
are intricate to emulate. To alleviate that problem one
would employ a speed pyramid.

4.2. Biological comparison

If the nervous system used such propagation maps for
speed estimation, one may wonder where and how they
might be emulated. With regard to the biophysical
mechanism (the ‘how’ issue), we intend to firstly discuss
the horizontal connection, in particular the subthreshold
propagation through the horizontal connections. We see
the following possibilities.

(1) The dense packing of dendrites may allow for a
subthreshold propagation of activity through dendro-
dendritic synapses.

(2) Neurons may be connected by gap junctions, which
rapidly propagate charge. It was long believed that gap
junctions hardly exist in neocortical neurons [23], yet recent
studies have indeed found them in a neocortical network of
electrically coupled inhibitory neurons [7,8]. It is therefore
reasonable to assume that gap junctions may also exist
between excitatory neurons but that they have not been
identified yet.

(3) The extra-cellular matrix may also contribute to
subthreshold wave propagation in some way. Several
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studies have shown that rapid calcium waves can spread
quickly through the gap-junctions of the glia network (e.g.
[3]). These calcium waves can alter the extracellular calcium
concentration rapidly and substantially, and could there-
fore have a significant effect on the electrical behavior of
neurons. It was also pointed out by Koch that such
extracellular dynamics are not well understood, yet worth
to model [12].

We next discuss how different dynamics may be achieved
in the biological substrate. We distinguish between the
synaptic, the neuronal and the architectural level. On a
synaptic level, one may possibly find different synaptic
decay times. Indeed, the nervous system possesses a variety
of excitatory and inhibitory synaptic dynamics [11]. For
example, the a-amino-3-hydroxy-5-methylisoxazole-4-pro-
prionic acid (AMPA) synapse releases a post-synaptic
current (PSC) of short duration (several milliseconds), the
N-methyl-D-aspartate (NMDA) synapse releases a current
of long-duration (several tens of milliseconds)—the latter
however only after the membrane potential has already
been elevated to a certain level. Inhibitory synapses, like
the y-aminobutyric acid (GABA), also come in variants
with different dynamics. We regard this possibility however
as too intricate to cover a range of speeds using only an
interplay of such synaptic dynamics. On a neuronal level,
different dynamics may be achieved with varying neuronal
‘packing’ densities in cortical layers. Would such variation
in packing cause the large difference in the required
dynamics? Possibly. Alternatively, evolution may have
evolved a speed pyramid, which would be a solution on the
architectural level. For instance, ‘speed-neurons’ in lower
areas like the primary visual cortex, may fire for lower
speeds, whereas higher areas may possess neurons firing for
higher speeds. A thorough review of the experimental
motion studies may bear hints on whether the visual system
may use such a structure.

There is also the possibility that a mixture of different
mechanisms is at work. It has already been suggested for
the computation of direction and orientation selectivity
(e.g. [12,25]), that not necessarily a mere, single mechanism
solves this task, but a multitude of them working together.
Similarly, that could be also the case for speed estimation.

Regarding the location of such maps (the ‘where’ issue),
one may readily suggest that they exist in area MT (V5),
where neurons seem to be involved in signaling speed (e.g.
[15,16]). But the signal of MT speed-tuned neurons is also
coupled to the direction of the moving grating. In contrast,
in our system no direction selectivity is involved and these
neurons are therefore ‘purely’ speed-tuned but such
neurons have not been found yet. It may be that biological
speed estimation is always related to direction computa-
tion. For example, we imagine that several coarse direction
are computed in connection with several coarse speeds. To
determine the exact direction and speed of a motion, the
coarse tuning curves would be read out as suggested above.

The speed-tuning curves of the presented system
resemble limitedly to the speed-tuning curves of MT cells.

The latter are typically bell-shaped for a range of different
speeds (e.g. [15,16]), whereas the former show only a bump-
like shape for medium speeds. For fast and slow speeds, the
speed-tuning curves are monotonically increasing and
decreasing, respectively.

The system can potentially compute speed very swiftly
because it uses single spikes only. The time it takes to signal
speed depends on the integration time of the map. One may
view this as a single spike code and such codes have already
been suggested by others for instantaneous pattern
recognition, i.e. [10,24].

5. Summary and outlook

A spiking propagation map was introduced that can
detect the speed of motion input when its dynamics are
properly tuned. The model can be regarded as an
elaboration of Glaser and Barch’s model [9] that includes
now the introduction of a mechanism signaling speed. A
crude simulation was run that outlines how such a map
may fit into a neuromorphic architecture in which a silicon
retina would provide the input to such propagation maps.
The dynamics could be analyzed in more depth by using
complex stimuli such as a pendulum stimulation (oscilla-
tion) or spiral-shaped motion input.

A next step in the elaboration of this model would be to
include a mechanism of direction computation. This may
require a sufficiently discerned look at the subject of
motion detection. Motion detection may not be solvable
with a single direction-selective mechanism but with
different techniques for different specific motion inputs.
A first step one may take is to perform tracking of a single
object of limited size. To circumvent the aperture problem
one may use large receptive fields that ‘swallow’ the entire
object and that would therefore be insensitive to the exact
contour orientations of the object. This may also bring the
model closer to a possible comparison to neurophysiolo-
gical findings.

With regard to a neuromorphic implementation, there
are many technical issues that have to be addressed. Firstly,
it requires the proper implementation of such a spiking
propagation map, whereby the resistor issue may be the
biggest hurdle to climb. Secondly, the actual use of a silicon
retina as input may require substantial adjustment of the
propagation map at the parameter level.
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