

A Relevance Feedback Approach to Video Genre Retrieval

Ionut MIRONICA¹

Constantin VERTAN¹

Bogdan IONESCU^{1,2}

¹LAPI – University Politehnica of Bucharest, Romania ⁵²LISTIC – Université de Savoie, Annecy, 74944 France

IEEE International Conference on Intelligent Computer Communication and Processing - Cluj Napoca – ICCP 2011

Agenda

- Introduction
- Relevance Feedback Algorithms
- Hierarchical Clustering Relevance Feedback
- Implementation and Evaluation
- Conclusion

I. Introduction

Query Database

Concepts

- Content Based Video Retrieval
- Query by Example

Query Results

Movie Sample

II. CBVR System

II. Color Descriptors

Objective: capture movie's global color contents in terms of *color* distribution, elementary hues, color properties and color relationship;

Global weighted histogram:

$$h_{GW}(c) = \sum_{i=0}^{M} \left[\frac{1}{N_i} \cdot \sum_{j=0}^{N_i} h_{shot_i}^j(c) \right] \cdot \omega_i$$

Elementary color histogram:

$$h_E(c_e) = \sum_{c=0}^{215} h_{GW}(c)$$
 | Webmast Name $(c_e) \subset Name(c)$

Webmaster 216 colors Itten's color wheel

[B. Ionescu, D. Coquin, P. Lambert, V. Buzuloiu'08]

II. Color Descriptors

Color properties

$$P_{light} = \sum_{c=0}^{215} h_{GW}(c)\Big|_{\mathbf{W}_{\mathrm{light}} \subset Name(c)}$$
: amount of bright colors in the movie, $W_{\mathit{light}} \in \{\mathit{light}, \mathit{pale}, \mathit{white}\};$

 P_{dark} : amount of dark colors in the movie, $W_{dark} \in \{dark, obscure, black\};$

 P_{hard} : amount of saturated colors, $W_{hard} \in \{hard, faded\} \cup elem.;$

 P_{weak} : amount of low saturated colors, $W_{weak} \in \{weak, dull\};$

 P_{warm} : amount of warm colors, $W_{warm} \in \{ \text{Yellow, Orange, Red, Yellow-Orange, Red-Orange, Red-Violet, Magenta, Pink, Spring} \};$

 P_{cold} : amount of cold colors, $W_{cold} \in \{ \text{Green, Blue, Violet, Yellow-Green, Blue-Green, Blue-Violet, Teal, Cyan, Azure} ;$

II. Action Descriptors

Objective: capture movie's temporal structure in terms of *visual rhythm*, action and gradual transition %;

Gradual transition %:
$$GT = \frac{T_{dissolve} + T_{fade-in} + T_{fade-out}}{T_{total}}$$

Rhythm: capture the movie's changing tempo

 $\xi_{T=5s}(i)$: relative number of shot changes within time window T starting from frame at time index i;

$$\stackrel{-}{v}_{T=5s}=E\{\xi_{T=5s}(i)\}$$
: movie's average shot change speed;

Action: in general related to a high frequency of shot changes;

→ "hot action"
→ "low action"

[B. Ionescu, L. Ott, P. Lambert, D. Coquin, A. Pacureanu, V. Buzuloiu'10]

II. Contour Descriptors

Objective: describe structural information in terms of contours and their relations;

Contour properties:

- b : degree of curvature (proportional to the maximum amplitude of the bowness space);
 straight vs. bow
- ζ : degree of circularity; $-\frac{1}{2}$ circle vs. full circle
- *e*: edginess parameter zig-zag vs. sinusoid;
- y: symmetry parameter irregular vs. "even"

+ Appearance parameters:

 c_m, c_s : mean, std.dev. of intensity along the contour;

 f_m, f_s : fuzziness, obtained from a blob (DOG) filter: I * DOG

[IJCV, C. Rasche'10]

III. Semantic Gap and Relevance Feedback

 Relevance feedback uses positive and negative examples provided by the user to improve the system's performance.

III. Relevance Feedback

Algorithms:

- Rocchio Algorithm
- Feature Relevance Estimation (FRE)
- SVM Relevance Feedback
- Hierarchical Clustering Relevance Feedback

III. Rocchio Algorithm

• Uses a set R of relevant documents and a set N of non-relevant documents, selected in the user relevance feedback phase, and updates the query feature.

$$Q' = \alpha Q + \frac{\beta}{|R|} \sum_{R_i \in R} R_i - \frac{\gamma}{|N|} \sum_{N_i \in N} N_i$$

- △ documents marked as relevant
- 🗖 query
- + other returned documents documents not returned

III. Feature Relevance Estimation (FRE)

- some specific features may be more important than other features
- every feature will have an importance weight that will be computed as Wi = $1/\sigma$, where σ denotes the variance of video features.

$$Dist(X,Y) = \sqrt{\sum_{i=1}^{d} W_{i} (X_{i} - Y_{i})^{2} / \sum_{i=1}^{d} W_{i}}$$

III. SVM – Relevance Feedback

- Train SVM with two classes:
 - positive samples
 - negative samples
- Classify next samples as positive or negative using SVM network

Use the confidence values of the classifiers to sort the images

Stop Condition

Variant 1:

- The number of clusters = a fixed number (e.q. quarter of the number of videos within a retrieved batch)

Variant 2:

- The number of clusters = an adaptive number

$$d = 1 - \frac{\min D_{ij}}{\max D_{ij}}$$

where Dij represents the distance between two clusters

Similarity measures – Centroid Distance

How will be clustered?

V. Implementation and Evaluation

The Test database

- 91 hours of video
 - 20h30m of animated movies (long, short clips and series),
 - 15m of TV commercials,
 - 22h of documentaries (wildlife, ocean, cities and history),
 - 21h57m of movies (long, episodes and sitcom),
 - 2h30m of music (pop, rock and dance video clips),
 - 22h of news broadcast
 - 1h55min of sports (mainly soccer) (a total of 210 sequences, 30 per genre).

V. Implementation and Evaluation

Precision – Recall Chart

Average Precision

$$AP = 1/d\sum_{i=1}^{d} precision$$

V. Implementation and Evaluation (1)

Precision-recall curves per genre category curves for different descriptors:

- Color & Action
- Contour
- Color & Action & Contour

V. Implementation and Evaluation (2)

Evaluation per video genre

VI. Conclusions

- Relevance feedback is a powerful tool for improving content based video retrieval systems
- The Hierarchical Clustering RF Approach outperforms classical RF algorithms (such as Rocchio or RFE and SVM) in terms of accuracy and computational effort.

Future Work

- Test the algorithm on bigger and more difficult databases with more classes, e.g. MediaEval 2011 – 26 genres, 2500 sequences from Blip.Tv (social media platform)

Thank you!

Questions?