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Abstract. In this work we propose an efficient method for activity recognition
in a daily living scenario. At feature level, we propose a method to extract and
combine low- and high-level information and we show that the performance of
body pose estimation (and consequently of activity recognition) can be signifi-
cantly improved. Particularly, we propose an approach extending the pictorial de-
formable models for the body pose estimation from the state-of-the-art. We show
that including low level cues (e.g. optical flow and foreground) together with an
off-the-shelf body part detector allows reaching better performance without the
need to re-train the detectors.
Finally, we apply the Fisher Kernel representation that takes the temporal vari-
ation into account. We show that we outperform state-of-the-art methods on a
public dataset with daily living activities.

1 Introduction
Automatic video scene understanding and activity analysis are active research topics
in computer vision. In this paper we focus on daily living activity scenarios. The in-
terest in activity recognition in this scenario is motivated by the promise of important
applications in areas such as patient monitoring and ambient assisted living.

Analyzing daily living scenarios is a challenging task. First of all, in such a sce-
nario, different activities differ only slightly in motion and appearance. In some cases,
the differences in appearance of the subjects performing the same task are more evident
than the difference in activities. Moreover, one activity can be performed in many dif-
ferent ways, while two different activities may be performed in a very similar manner
with respect to motion and appearance. For example, dialing and answering the phone
are activities only slightly different in terms of hand movements. Particularly, if we
consider the Activity of Daily Living (ADL) dataset1, the difference between two activ-
ities in most cases is limited to taking phone, banana or knife from the table, shelf, or
refrigerator and doing slightly different other activities (e.g. eat snack and drink water).

Recently, Bag-of-Words (BoW) models relying on local features have become pop-
ular in dynamic scene understanding due to their robustness to noise and occlusions.
However, the traditional BoW representation that has typically been applied in activity
recognition scenarios has some substantial restrictions [3], [13], [32]. First of all, a
BoW representation based on low-level cues limits the access to the high-level infor-
mation that may be discriminative. Secondly, being a frequency histogram of quantized

1 www.cs.rochester.edu/∼rmessing/uradl/
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local appearances or motion, the relationships between temporal cues are totally ig-
nored.

In this paper we address these two drawbacks in the BoW representation. First, we
make an enriched descriptor by combining low- and high-level cues that are obtained
from the local motion and a body pose detector. In this way, the source of motion (e.g.
a hand) is taken into account. Second, we apply a Fisher Kernel representation of the
combined low- and high-level features to model the temporal variation. Additionally,
we provide an efficient method for body pose estimation which builds upon [33] and
allows us to improve the detector performance on a new dataset by simply exploiting the
information provided by easy-to-extract low level cues (thus saving the cost of creating
the ground-truth and re-training the detector). Finally, we apply the popular non-linear
SVM classification method and show that the obtained results outperform the state-of-
the-art on the ADL dataset.

2 Related Work
Typical approaches for activity recognition rely on a two-steps paradigm. The first step
concerns the generation of feature vectors: features are extracted and quantized accord-
ing to a pre-defined codebook and accumulated to form the so called bag-of-words. The
second step takes these bags-of-words as input and learns how to classify the different
actions. This phase is generally supervised and a training set is available for learning.

The first step is crucial for the good performance of the second one. In fact, the
information discarded at this step can hardly be recovered afterwards. For example, if
the codebook is defined based on local motion (e.g. tracklets or optical flow), all the
information about the structure of the scene or about the entity involved in the motion
is discarded. This causes a huge information loss, which heavily limits the capability
of comprehending a scene in the learning step that follows. Over the past years, many
works addressed this limitation and much effort has been devoted to enrich the descrip-
tors with additional information beyond motion: (i) some works take into account the
relationship between the spatio-temporal local features [8], [11], [16], [25]. Zhang
et al. [35] enriched their descriptor not only with the relationship between neighboring
local space-time features but also by considering the long-range relationship of local
features. (ii) Malgireddy et al. [15] and Kovashka et al. [11] combined local features
and made enriched descriptors. Others proposed taking the contextual features of in-
terest points into account in a BoW representation [2], [30]. (iii) Lately, an increasing
number of works exploited the information coming from detectors as a high level infor-
mation about the observed scene [17], [22], [23], [34]. This is a step towards a higher
level comprehension of the scene, w.r.t considering only low- or mid-level information
represented by the local motion (e.g. optical flow, tracklets) or the local appearance
(e.g. SIFT, HOG). In this way, the nature of the body parts involved in the observed
motion is considered. In our daily living scenario, the person is monitored from a cam-
era in a controlled environment and the body is clearly visible and mostly not occluded.
We combine local motion with the high-level information coming from a body limbs
detector. To do so, an efficient and accurate body pose estimator is required.

Over the past decade, many approaches have been proposed for capturing human
body parts [6], [7], [10], [21], [29]. These works focused on generalizing and extend-
ing the pictorial model. Pictorial structure as a model to represent human body pose is
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a popular approach that tries to model an object by its parts arranged in a deformable
configuration. The problems of the variety of body part appearances, different orienta-
tions, and different scales in which humans may appear were not well-investigated in
the traditional pictorial structure. Felzenszwalb et al. [5] proposed an extension of the
pictorial model to detect objects at different scales using a multi-scale HOG-pyramid.
Yang and Ramanan [33] proposed a more general pictorial model covering a variety of
body configurations. Their proposed approach is among the most efficient works that
model the human body skeleton as a tree. They detect small bounding boxes instead
of complete body limbs. This makes their work more efficient because it prevents the
problem of double counting. In their work, a local appearance template is obtained by
a multi-scale HOG descriptor [4] that allows detection at different scales. Our human
pose estimator is built upon their work [33].

Finally we investigate the use of the Fisher Kernel representation to model the tem-
poral variation of videos. Involving the temporal variation is not well-investigated yet.
There are a few works that modeled the temporal variation/order of frames [26]. Kuehne
et al. [12] and Qi et al. [20] used Hidden Markov Models. Other works employed tem-
poral rules with high-level concepts [14]. To the best of our knowledge the only work
that used Fisher Kernel to model the temporal variation in videos is [18]. They em-
ployed a frame-based global feature descriptor for a movie-genre classification sce-
nario. In our work, we use Fisher Kernel to model the temporal variation over local
descriptors of individual body-parts that are detected in consequent frames of a video
in an action recognition scenario.

3 Our Method
We propose a novel activity recognition method obtained by combining information
taken from both the local motion and the body part detector. Combining low- and high-
level cues exploits the advantages of both cues: on one side the robustness of low-level
cues (e.g. optical flow), w.r.t occlusions, on the other side having the information about
the body part involved in an activity increases the scene disambiguation.

In the case of body pose estimation, a significant drop in accuracy has been ob-
served when a detector is trained on one dataset and it is evaluated on a different one
[22]. The reason is that for some cases there are not enough samples in the training set.
As the detector gives more priority to the positive samples of training set, the chance of
detecting uncommon (w.r.t positive samples) body poses decreases. A possible solution
to this is to set the body pose groundtruth for the new dataset and re-train the classifier.
However, this procedure is very expensive and requires a consistent delay every time a
new dataset has to be analyzed. Instead of training another classifier on the new dataset,
we propose to use the already trained classifier, but we provide some additional infor-
mation from the new dataset. Specifically, we used the classifier trained on the Buffy
dataset [7], using the approach from [33]. Then we boost the classifier by exploiting the
information of low-level cues from the ADL dataset. These low-level cues (i.e. optical
flow and foreground pixels) can be easily extracted from a stationary webcam as in our
case. To evaluate our contribution for pose estimation in a new dataset, we annotated
the upper body poses for 371 frames obtained from different clips of the ADL dataset2.

2 The groundtruth on body pose is available at: https://sites.google.com/site/negarrostamzadeh/Ground-
Truth.7z
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Then, we create our descriptors by combining our enhanced body-pose estimator with
the local motion (i.e., optical flow), that is already extracted for enhancing the pose es-
timator. Finally, we apply a Fisher Kernel representation to our descriptors to model the
temporal variation in video, and apply a popular non-linear SVM classifier (SVM with
RBF kernel) on our descriptors to classify the activities. The details of our approach are
provided in the following sections.

3.1 Body Pose Estimation
Pictorial structures model the body as an ideal template represented as a graph, G=(V,E),
in which single body parts (V) templates are connected with springs (E) that represent
the geometric constraints between them. The placements of these springs can change,
while the structure of the model is preserved. These deformations present different pos-
sible configurations of body parts. Each possible body configuration is given a score
that is based on the sum of local and pairwise scores [5, 6]:

S(I, p, t) =
∑
i∈V

wtii φ(I, pi) +
∑
i,j∈E

w
ti,tj
ij ψ(pi − pj) + S(t) (1)

where φ(I, pi) is a HoG descriptor extracted from the pixel location pi in image I and
ψ(pi − pj) is the relative location of part i with respect to j. The first term in Eq 1
represents the local score (also called appearance model) that indicates how likely is
that a template ωtii for part i ∈ {1, ...,K} of the body, tuned for type ti, is located at
position pi = (x, y) in the image I . The second term represents the pairwise score (also
called deformation model) and controls the relative location of part i with respect to j.
S(t) is a compatibility function defined as,

S(t) =
∑
i∈V

btii +
∑
i,j∈E

b
ti,tj
ij (2)

where btii represents the bias that favors particular type assignment for single part i and
b
ti,tj
ij represents the pairwise co-occurrence of parts i and j.

Our work builds upon [33] where the body relational graph is as a tree. The infer-
ence corresponds to maximizing the score function S(I, p, t) over p and t and it can be
efficiently solved with dynamic programming when the relational graph G = (V,E) is
modeled as a tree:

Si(ti, pi)=b
ti
i +w

i
tiφ(I, pi)+

∑
k∈kids(i)

mk(ti, pi) (3)

where mk(ti, pi) collects the message from the children of part i (located at pi for the
type ti). In Yang et al [33], the local score (the second term in Eq. 3) is based only on
the appearance cues (i.e. HOG). Differently from them, in our work, we use a model
that is trained on a dataset (Buffy dataset [7]) and we enrich the local score by including
information provided by the local cues, such as foreground and optical flow, calculated
for a new dataset (ADL dataset):

S(ti, pi)=b
ti
i +w

i
tiφ(I, pi)+αβS

i
FG(pi, γ)+(1−α)ηSiOF (pi, λ)+

∑
k∈kids(i)

mk(ti, pi) (4)
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In Eq. 4, local foreground and optical-flow information are combined with the local
appearance information at the testing level. SFG and SOF respectively present fore-
ground and optical flow scores corresponding to the information that comes from these
local cues. In our representation the impact of SFG and SOF is controlled respectively
by parameters β and η. Moreover, the relative impact of the two added terms is con-
trolled by the parameter α.

Computing the foreground score (SFG). The foreground score SiFG is defined as the
percentage of foreground pixels contained in the corresponding body part’s bounding
box, centered at location pi = (x, y). In order to extract foreground pixels, we applied
the dynamic Gaussian Mixture background subtraction model [27]. For the foreground
score, we consider a smaller bounding box w.r.t the one used for computing the HOG
features, otherwise we would include some unnecessary portion of the background. In
particular, we compute the number of foreground pixels |pixels{pi,γ}FG | in a bounding
box of size LFG = 1

γL, centered at pi, where L is the size of appearance bounding
box. In the experimental section we report the effect of varying γ.

The foreground score SFG is computed as follows:

SiFG (pi, γ) =
|pixels{pi,γ}FG |
|pixels{pi,γ}|

(5)

where |pixels{pi,γ}FG | represents the number of foreground pixels that are present in a
box centered at pi with size LFG, and |pixels{pi,γ}| represents the total number of
pixels in the foreground bounding box.

Computing the optical flow score (SOF ). We use the Lucas-Kanade optical flow
algorithm [28]. Similarly to the foreground score, we compute the number of optical
flows |pixels{pi,λ}OF | in a bounding box of size LOF = 1

λL, centered at pi. The optical
flow score is formulated as follows:

SiOF (pi, λ) =
|pixels{pi,λ}OF |
|pixels{pi,λ}|

(6)

where |pixels{pi,λ}| represents the number of pixels in the optical flow bounding box.

3.2 Activity Recognition
For the low-level cues, we quantize the motion vectors into 8 possible directions. For
the high-level cues we apply our enhanced pose estimator and detect the placement
of Nbp body-parts (in this experiment Nbp = 18). Then we make an 8 bin histogram
for each body-part. Optical flows are assigned to the corresponding body part. Finally,
we concatenate all of the 8 bin histograms and create an 8 × Nbp bin histogram for
each frame. Then we apply 2 representations and show how our approach outperforms
the state-of-the-art. As the first representation, we simply accumulate all the histograms
assigned to each clip in one histogram. For the second representation, we want to model
the temporal variation within the video. We employ the Fisher Kernel to do so.

The Fisher Kernel representation was introduced recently to improve the BoW for
representing sets of local appearance descriptors. The Fisher Kernel was designed to
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combine the benefits of both generative and discriminative approaches [9] and creates
a fixed-length representation for a set of vectors. In this paper we use the Fisher Kernel
to model the temporal variation in video. To do this, one can view a set of frame-based
features (where we extract one feature from each frame) as a cloud of feature vectors.
We can model this cloud with respect to a Gaussian Mixture Model (GMM) with di-
agonal covariance matrices. The resulting Fisher representation models the temporal
variation in a generative way. Afterwards, we use the Fisher vector in a discriminative
classifier (SVM).

The gradient vector is, by definition, the concatenation of the partial derivatives with
respect to the model parameters. Let µi and σi be the mean and the standard deviation of
i’s Gaussian centroid, Γ (i) be the soft assignment of descriptor xt to Gaussian i, and let
D denote the dimensionality of the descriptors xt. Gxµ,i is the D-dimensional gradient
with respect to the mean µi and standard deviation σi of Gaussian i. Mathematical
derivations lead to [19]:

Gxµ,i =
1

T
√
ωi

T∑
t=1

Γ (i)
xt − µi
σi

(7)

Gxσ,i =
1

T
√
2ωi

T∑
t=1

Γ (i)

[
(xt − µi)2

σi2
− 1

]
(8)

where the division between vectors is a term-by-term operation. The final gradient vec-
tor Gx is the concatenation of the Gxµ,i and Gxσ,i vectors, for i = 1...K. The final
feature vector becomes a 2KD dimensional vector. At the end, we perform the nor-
malization of the Fisher vectors since [19] has found this to significantly increase per-
formance. The applied normalization is a combination of L2 and power normalization
(f(x) = sign(x)

√
α|x|) [19].

4 Results

4.1 Dataset

We present our pose estimation and activity recognition results on the ADL dataset.
This dataset consists of 10 different activities: answering a phone, dialing a phone,
looking up numbers in a phone book, writing on a white board, drinking water, eating
a snack, peeling a banana, eating a banana, chopping a banana and eating food with
silverware. Each of these activities is performed 3 times by 5 different people. These

(a) (b)
Fig. 1. A sample frame and its corresponding ground truth: (a) body pose tree showing the num-
bers in the correct positions (b) bounding boxes.
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people have different genders, ethnicity, and appearance so sufficient appearance vari-
ation is available in the dataset. The original frame size is 1280 × 720. The frame-rate
of the videos is 30 frames/s. Each clip is in the range of 3-50s and we extract features
at a rate of one frame/s.

4.2 Groundtruth and Performance Evaluation

In this work, we provide qualitative analysis of our approach for body pose estimation
and for activity recognition and we compare our results with related works. The ground
truth for activity recognition comes with the dataset (i.e. each video clip contains a
specific activity), but no groundtruth on the body pose is provided. Thus, we annotated
371 frames from different clips of ADL. For the annotation, we followed the procedure
as indicated in [33]. The example of an annotated frame is shown in Fig.1. Each of the
18 points in Fig.1(a) is the centroid of the bounding box of the corresponding body part
of size L (as shown in Fig.1(b)).The accuracy of the body pose estimation is computed
by comparing the positions of the groundtruth bounding box BGTi and of the estimated
bounding box BEi , for each body part i = 1, ..., 18. If the overlap of BEi with BGTi is
more than 80%, the body part is considered as being correctly detected. The accuracy
of the body pose estimation is obtained by averaging over the accuracies of individual
body parts.

4.3 Body Pose Estimation

In Eq. (4), α is a parameter controling the relative importance of foreground and optical
flow scores. To find the optimal values for different parameters, we tune parameters
separately for SFG and SOF . To do so, we first set up α = 0 and α = 1 and find the
optimum solution for (β, γ) and (η, λ), respectively. Then we tune α to get the best
relative importance of SFG and SOF .

Varying parameters of SFG and SOF . Fig. 2(a) and Fig. 2(b) show how varying the
parameters γ, β and λ, η changes the detector’s performance. We recall that increasing
γ and λ respectively decreases the widths of the foreground window and the optical
flow window. Choosing a too small value for the parameters γ and λ consequently in-
creases the size of the foreground and optical flow windows which worsen the detection
results by bringing background noise into account. Choosing too large values for γ and
λ decreases the size of the windows and consequently some low-level information re-
lated to the foreground and optical flows is discarded and hence the performance will
decrease. In our experiment we found γ = λ = 5 as the best values, and consequently
the foreground and optical flow windows have the same size.

(a) (b) (c)
Fig. 2. Body parts detection accuracy at varying parameters (a) γ, β while α = 1; (b) λ, η while
α = 0; (c) α
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Body part 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Average
HOG 83.3 89.0 92.2 84.9 67.7 60.9 46.1 84.4 60.9 56.3 89.2 84.4 65.8 63.1 51.2 80.6 60.7 54.5 70.8

HOG-FG 83.7 88.4 93.3 84.6 67.9 58.2 43.7 87.9 64.4 62.5 90.0 87.6 67.1 68.5 55.5 80.6 60.9 57.4 72.3
HOG-OF 83.8 89.0 93.3 85.2 68.7 60.7 48.5 86.5 63.9 59.8 89.7 86.5 67.4 66.9 55.8 81.4 60.9 56.3 72.5

HOG-OF-FG 83.8 89.0 93.3 85.4 70.1 62.0 49.1 86.5 63.9 60.7 89.2 85.4 67.4 68.7 55.5 83.0 61.5 57.1 72.9

Table 1. Accuracy of different parts of the body. For most of the cases, applying HOG-OF-
FG local descriptor achieves a better detection accuracy. The last column represents the overall
performance. Bold numbers show which single-descriptor works better on the correspondent part.

(a) (b) (c) (d) (e) (f)
Fig. 3. Body configuration obtained with (a) [33] and (b) our method, including the information
of the foreground mask in the body pose estimation (c). (d) [33] and (e) our method, including
the information of the optical flow in the body pose estimation (f).

As we previously mentioned, β and η respectively represent the weights of the fore-
ground and optical flow scores. Giving larger weights to the foreground or optical flow
scores forces the detector to the ignore information that is obtained from HOG. In our
experiments, we found that the best solution for these parameters is β = 0.15 and
η = 0.05. In Fig. 2(c) we show how the relative pose estimation performance changes
by giving different weights (α) to the foreground and optical flow scores. The highest
performance is obtained by giving the weight 0.6 to the optical flow score and 0.4 to
the foreground score (i.e. α = 0.4).

Detection performance on different body-parts. Table 1 presents the best detection
performance for different body parts using different local descriptors. Bolded num-
bers in Table 1 illustrate that applying the foreground descriptor improves the detection
performance of the parts that are located in the subject’s torso, while the optical flow
score improves the detection performance mostly on the subject’s hands as in the ADL
dataset, usually the hands are moving more than the other parts.

Fig. 3(a) illustrates a sample in which using foreground information (Fig.3(c)) helps
the detection of the right hand of the subject (Fig. 3(b)). Fig. 3(d) shows an example in
which optical flow information (Fig. 3(f)) helps the body-pose estimator to detect the
left hand of the subject in Fig. 3(e).

4.4 Activity recognition

In Table 2(a) we present the performance of our activity recognition approach for the
2 different representations (we use leave-one-person-out cross-validation): (1) accumu-
late features descriptors over an entire video sequence and (2) use the Fisher-Kernel
representation. The results show that even with the first representation that discards all
the information about the temporal order and variation we obtain similar performance
to some works in the literature that applied more expensive feature descriptors (see Ta-
ble 2(b)). Additionally, by applying the Fisher Kernel representation we outperform all
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Local descriptor in body part detector Accumulation Fisher-Kernel
HOG [33] 87.32 95.71
HOG-FG 88.93 98.57
HOG-OF 87.50 97.14

HOG-FG-OF 89.11 98.75

Method Accuracy
Wang et al. [31] 96.0
Bilen et al. [1] 74.0

Matikainenet al. [16] 70.0
Satkin et al. [24] 80.0
Bilinskiet al. [2] 93.33
Kuehneet al. [12] 82.0

Messing et al. [17] 89.0
Our approach 98.75

(a) (b)
Table 2. Activity recognition performance: (a) our approach: descriptor accumulation over a
video sequence vs. Fisher Kernel representation for different body pose estimation methods (b)
Performance comparison with the state-of-the-art on the ADL dataset.

the state-of-the-art methods (Table 2(b)). The closest accuracy performance is reported
by Wang et al. [31]. They applied Multi-Kernel-Learning, while our result is obtained
using SVM with RBF kernel. The results with the Fisher Kernel representation are ob-
tained with an optimized number of GMM centroids (the dictionary size), which in this
case is equal to 20.

5 Conclusions and Future Work

In this paper we present an efficient method to recognize activities of daily living. We
combine the cues that are obtained from a body pose detector and local motion. This
step created a descriptor that uses the structure of located motion. In this way, we in-
volve high-level information combined with the low-level cues. Moreover, we show that
including low-level cues (i.e. optical flow and foreground) together with an off-the-shelf
body part detector gives a better performance without the need to re-train the detectors.
In fact, we generate optical flow information once, and then apply it for both enriching
the body-part detector and quantizing flows for activity recognition task. We also model
the temporal variation within the video using the Fisher Kernel representation. Finally,
our novel descriptor with the Fisher Kernel representation achieved the best reporting
results so far for the ADL dataset. In future work we plan to extend our approach for
more challenging scenarios such as fine-grained activities [22].
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