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Abstract — This paper addresses the problem of Static Hand 
Gesture Recognition (SHGR) and proposes a fast yet simple 
solution based on Discrete Hidden Markov Models (DHMMs) that 
use features extracted from the hand contours. In addition to 
previous work, the use of depth information ensures robustness to 
the overall system, making it background invariant. Experiments 
carried on a challenging noisy dataset reveal the superior 
discriminating as well as generalizing abilities of statistical 
models, when compared to state-of-the-art methods.  

I. INTRODUCTION 
Gesture recognition is a major player in the field of computer 

vision, regardless of the nature of the gestures (face, hand, 
body). It aims at inferring behavioral cues and uses this 
information to facilitate human behavioral understanding or 
different aspects of human-computer interaction. When it comes 
to hand gestures, such aspects may refer to browsing through 
menus, interpreting different messages or posting various 
commands to intelligent systems.  

Recent developments in depth sensing, along with the fact 
that technologies that record this type of data have become more 
affordable (e.g. MS Kinect [1], Asus Xtion [2]), opened new 
perspectives in solving the inherent 2D problems, like loss of 
valuable information due to projection, occlusions, background 
extraction etc. 

A successful hand recognition system requires a fruitful 
association between discriminative features that are fast and 
easy to extract and efficient classifiers that are able to value the 
chosen features. The literature offers various combinations, 
each having strengths and weaknesses. High level features are 
preferred because of their compact representation and ease of 
describing gestures from a structural approach. In some studies  
[3] [4] [5] anchor points, color gloves and other sensors are used 
to extract different features, but these methods are rather 
invasive and reduce considerably the naturalness of gestures. 
More recently, in [6] fingertips are obtained by analyzing 
curvature segments extracted from contours, using an approach 
similar to that in [7]. While the features themselves seem 
promising, they do require appropriate classification algorithms 
in order to use the considerable amount of information they 
provide. Low level features (e.g. appearance cues, contours, 
edges) on the other hand are certainly more efficient in this 

regard and, according to [8], are present in vast majority of 
studies. 

Generally, hand gestures can be divided into two main 
categories: static ones, for which only the configuration and 
posture of the hand are of interest and dynamic gestures, where 
more attention is paid to the trajectory described by the hand 
over time. While in the static case the recognition can be 
performed using standard pattern recognition tools [9] [10] [11] 
[12], the dynamic domain requires techniques that use temporal 
information like time-compressing templates [13] or Hidden 
Markov Models [14] [5] [15]. One intensely studied application 
of HGR is sign language recognition (SLR), which treats both 
static as well as dynamic problems. There are many published 
papers on SLR, some of the most relevant being the work of 
Sarkar et al. [16] [17] [18] and Sclaroff et al. [19] [20]. As 
stated in [21], HMMs are often used for dynamic HGR and this 
is mostly attributed to their success on speech processing. 

Depth sensors have also been included in gesture recognition 
systems, as a simple and convenient way of isolating the object 
of interest from the background. Many recent studies [22] [23] 
use such device for this purpose. 

To our knowledge, this is the first work to employ HMMs for 
hand posture recognition using a Kinect sensor. We propose a 
robust and efficient approach using both depth information as 
well as the color data obtained from the sensor. The robustness 
spans several areas, making the resulted system immune to 
background properties and invariant to changes in scale and 
small rotations. Moreover, each individual frame is processed 
(i.e. feature extraction and classification) in less than 32 ms, fast 
enough for most applications that pose real time constraints. 

The remainder of the paper is organized as follows: Section II 
presents the proposed approach, while in Section III we report 
the experimental results. Finally, Section IV concludes the 
paper. 

II. PROPOSED APPROACH 
This work describes a background invariant Discrete Hidden 

Markov Model based recognition system where hand gestures 
are modeled using Markovian chains along with observation 
sequences extracted from the contours of the gestures. The idea 
of using HMMs for static hand postures in the first place came 
from the dynamic domain. It is well known that Markov Models 
are suited for dynamic processes, especially when one can point 



to parts of these processes that share similar statistical 
properties. Imagining such a process in the static field can 
extend the conventional use of the HMM. One can easily isolate 
different parts like finger segments by exploring the gesture’s 
contour. Therefore, it makes sense to use HMMs, even though 
there are no gesture dynamics involved. The success of the 
statistical models relies heavily on the ability of highlighting all 
the contour segments “seen” in the training stage. 

As pointed in [24], DHMMs work very well with “clean” 
(background dependent) data, resulting in high recognition 
accuracies. As will be shown in this paper, they also cope well 
with more challenging samples, as ones obtained from a cheap 
sensor like Kinect. The processing flow starts with 
synchronizing the two channels, followed by small adjustments 
applied to the images in order to overlap and fit seamlessly. 
This was solved by a linear mapping between the depth frame 
and the corresponding colored one. 

A. Isolating the gestures 
Assuming that the hand is the only object closest to the 

sensor, the isolating stage follows a fairly easy routine by using 
two types of segmentation: one is applied to the depth image 
and consists of an adaptive threshold that separates the close 
range field from the background. The other consists of a simple 
and fast skin color detector, applied to the RGB frame. 

The final isolated object is obtained by combining the two 
segmentation images in a logical sum, as can be seen in Fig. 1. 
This procedure ensures that the hand is extracted from the 
scene even though it overlaps other skin colored background 
objects (like for instance the face). 

 

 
 

Figure 1. Example of segmenting one frame from the test set: a) – original 
RGB image, b) – corresponding depth frame, c) – skin color segmentation 

result, d) – depth segmentation result and e) – logical summation of c) and d) 

B. Feature extraction 
After isolating the hand from the background, a median 

filtering is performed for smoothing the boundaries and then 
these are extracted by tracing the outline of the object in the 
binary image. In case of multiple unlinked objects, only the one 
with the longest boundary is kept.  

Given the contour, a starting point is adopted (in this case 
the most southern and then eastern is chosen) and afterwards 
the curve is re-sampled as to meet a specified length. Besides 
aligning all the contours to the same length, the re-sampling 
process (applied to the 2D points that describe the boundary) 
ensures a most welcome robustness to changes in scale. This 
means that, regardless of the size of the hand gesture, the 
extracted contour will always have the same dimension and, 
after the next processing step, roughly the same feature values 
will be obtained. The 2D points are used to compute the angles 
that the tangent to the contour determines with the horizontal 
axis during the exploring process. Finally a rescaling stage 
maps the angle values to the dictionary symbols of the DHMM, 
resulting in aT sized observation sequence, as seen in (1). 
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 The feature extraction process is briefly outlined in Fig. 2. 
Given the re-sampling process and that the angles are 
calculated with respect to a reference set to the aforementioned 
starting point i.e. on the hand itself, the resulted features are 
robust also against changes in scale and translation. This offers 
the freedom of naturally moving the hand inside the frame. 
Additional robustness to small changes in rotation along the 
normal vector to the camera plane will be incorporated by the 
models.  

C. Training the models 
Each gesture is associated a left-to-right Hidden Markov 

Model that “learns” the class specifics during training and 
stores them in the form of probabilities and probability 
distributions. The particular structure of HMMs used here 
allows transitions either from one state to itself or to the next 
one. This is consistent with the exploring process, even though 
observation symbols may have repeatable values in different 
parts of the contour.  
 

 
Figure 2. Feature extraction starting from segmented image, followed by 
extracting the contour and ending up with the angle sequence made by the 

tangent to the contour with the horizontal axis. 



HMMs are oriented graphs described by three main 
parameters: }{ ijaA = , the state transition matrix, which holds 
the probabilities of jumping from one state to another, 

)}({ kbB j= , the state probability distribution, responsible 
with modeling the observation symbols associated to each state 
j  from the graph and }{ππ j= , the initial state probability 

vector, that models the uncertainty of having a given state as 
the first one. The training process assumes an initial 
segmentation of the training sequences, in order to define and 
initialize the state parameters of the graph. This segmentation 
was performed by observing that each gesture could be 
represented by a finite number of concatenated segments. 
These segments were chosen in order to group observation 
symbols that share similar values. In this manner, not only the 
number of states for each model was fixed, but also the 
premises for initializing all other parameters were obtained. 

In the second part of the training stage, the model parameters 
are tuned by re-estimation formulas, in order to fit the data 
from the training set. Once a model is trained, it is able to 
evaluate the likelihood of each observation sequence to belong 
to its class using (2): 
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where },...,,{ 21 Tqqq  represents any state sequence out of all 
possible Q , },...,1{ Nqi ∈ , with N  being the number of states 
and ),,( π=λ BA  the trained model. In practice though, (2) is 
not used due to computational costs. Instead, other more 
efficient ways of computing )|( λOP , such as the forward or 
backward procedures, are to be preferred. There is also a third 
option, namely the Viterbi algorithm, which does not compute 
exactly the desired likelihood, but the probability of the most 
likely state sequence. This algorithm is of high interest for our 
scenario as it also provides the path itself along with the 
associated probability for each observation symbol and this is 
efficiently used to discriminate models in a post-processing 
stage, consistently improving overall accuracy.  

III. EXPERIMENTAL RESULTS 

A. Experimental setup 
The training dataset is identical to that used in [24]. The 

same 450 images representing 9 gestures recorded in clean 
strictly supervised conditions are used to train 9 Markovian 
models with discrete probability densities for the states. The set 
describes gestures of a single person and includes small 
variations in scale, translation and 0x, 0y and 0z alternative 
rotations for each gesture.  

Additionally we tuned the models on a separate validation 
set. All images here (around 7300) belong to the same person 
and present similar clean conditions as in training. 

Our test set is recorded in more challenging setup, including 
illumination changes, uncontrolled background and a wider 
range of rotation angles. It sums over 8500 images recorded by 

6 persons in front of a Kinect camera. The subjects were 
permitted to freely express the gestures within a range of 1–1.5 
meters away from the sensor. Some relevant examples are 
presented in Fig. 3. 

At testing stage, each trained model was used to generate a 
score proportional to the probability that a given sample belongs 
to that particular class. Even though the score corresponds to the 
most probable state path (obtained by the Viterbi algorithm), the 
model hierarchy does not change, which allows us to directly 
compare scores and assign the winning class to the highest one.  

Each test sample was assigned one of the 9 gesture classes 
and for each class a mean precision value was computed, by 
summing all correct classifications and dividing the result by 
the number of samples. 

B. Tunning the parameters 
The resulted scores were subject to further processing, by 

using the state paths that come along as a byproduct with the 
Viterbi procedure. By fixing empirical margins with respect to 
the mean state distribution obtained in the training process, we 
were able to model state consistency (i.e. how many discrete 
time measures pass through a particular state) and reduce the 
scores accordingly. Therefore, given that all the states for each 
model were consistent at training, the winning score would at 
least have passed the consistency check. Additional constraints 
(e.g. imposing similar lengths for states that belong to 
symmetrical models, like in the case of the second gesture) 
boost the accuracies even further, ending up with a mean 
recognition rate of 93.38% on the test set (95.52% on validation 
set), which is more than satisfactory, given that the models were 
trained and tuned on clean data. This result enforces the 
generalizing abilities of statistical models that manage to keep 
high accuracies when moved from validation set to test data. 

C. Comparison to state-of-the-art  
We compared our results with two recent approaches [6] [12] 
that share similar or close enough scenarios. The first one uses 
a structural description of each gesture based on higher level 
 

 
 

Figure 3. Examples from the test set showing each of the 9 static gestures 
recorded. Classes are numbered from top to bottom and from left to right 



features like finger tips, segments and their position within the 
hand posture. Classification is performed using decision trees. 
The second approach extracts the angle count, skin color angle 
and non-skin color angle in combination with Hu invariant 
moments features and uses k-nearest neighbor algorithm (k-NN) 
as a classifier. In order to prove that HMMs are suitable for this 
task, we compare our results against state-of-the-art SVM 
classifier. 

Fig. 4 shows the results obtained by all considered methods 
on the test set. Each bar displays the precision value for each 
gesture class, as described in section A of this paragraph. Our 
proposed approach outperforms the other three on average, 
managing to obtain high accuracies on all classes, except the 
last one, where, due to noisy samples as well as high rotation 
angles, the precision did not pass 80%. 

The method from [6] relies heavily on detecting finger tips, 
which in many samples from our dataset are not entirely well 
defined. The second approach is also having difficulties in 
distinguishing gesture classes, mostly because the Hu features 
are invariant to rotation changes and of all 9 gestures, the 9th 
and the 8th are obtained by rotating the 3rd and the 7th 
respectively. On average the system from [6] recognized 72.3% 
of all test samples, whereas the one from [12] obtained a mean 
recognition rate of 69.22%. By combining our features with 
SVM and Histogram Intersection kernel, we obtain an accuracy 
of 88.31%, which is still more that 5% less that our mean result.  

IV. CONCLUSIONS 
In this paper we present an efficient system that addresses 

Static Hand Gesture Recognition using discrete HMMs and 
angle features extracted from gestures’ silhouettes. The system 
is robust against changes in scale, translation and small rotations 
and also against person specifics. Additional robustness is 
brought by using a Kinect sensor, which allows separating the 
close range hand object from virtually any type of background. 

Experimental results confirm the discriminative power of the 
chosen features as well as the flexibility and generalizing ability 
of the statistical models. 
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