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Abstract—Convolutional neural networks are data hungry
and in cases when annotation is costly or difficult, additional
information from other sets may be welcomed. In this paper,
to improve the performance on the main task, we introduce a
secondary one, over unlabeled data to provide better structuring.
The solution falls in the theme of multiple task learning and
unlabeled data is integrated next the main regression task
by classification via pseudo-labeling. The method is showed to
improve the baseline performance for image aesthetic assessment
on the AADB benchmark.

Index Terms—multi-task, self-labeling, aesthetic, entropy reg-
ularization

I. INTRODUCTION

Interesting and aesthetically pleasant images was long ago
a desiderata of the photographer. Camera manufacturers and
photographic software builders have sought methods to eval-
uate the aesthetic quality, to suggest improvements and make
adjustments to given images. Recently, this direction has
gathered new momentum due to the usage of convolutional
neural networks. For a broader introduction to the topic and
and more detailed taxonomy we refer to the review by Athar et
al. [1]. In short, the aesthetic assessment proposes qualitative
evaluation and solutions to judge how visually pleasant is an
image, based on photographic rules [6].

The first challenge of the problem is to establish strong
ground truth. The annotation process requires that many ob-
servers to judge the visual quality of content and the average
of subjective ratings, called Mean Opinion Score (MOS), will
be used as ground truth. The difficulty arises from the fact
that aesthetics is a subjective matter and considering many
opinions, one most likely will end having always averages
scores. Alternatively, only few, but highly qualified persons
may be involved; yet, such persons are rare and less willing to
annotate large volumes of data. Educating many average users
is expensive and time consuming. Therefore the second major
challenge is to acquire volumes of data, accurately annotated
such that the power of deep learning may be unleashed.

In this paper, we tackle the problem of aesthetic evaluation
using a small, but carefully annotated databases. We build a
CNN based solution and, observing the limited information
in the training set, we propose a strategy to use additional
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unlabeled data. Since the main task is of a regression, while
the unlabeled data is used in a classification framework, the
problem is treated as multiple task learning.

The remainder of the paper is organized as follows: in
section II we review some of the relevant prior works. In
section III we formalize the proposed algorithm. Details of
implementation and achieved results are in section IV. The
paper end with discussion and conclusions.

II. RELATED WORK

Because the theme of this paper is the image aesthetic
evaluation and the technical contribution lies into the transfer
learning, we will review relevant works in both directions.

Predicting Image Aesthetics The idea of constructing ar-
tificial measures for the pleasantness of an image have in-
trigued computer vision researcher for a while. Since the
aesthetics are subjective, a starting point is the understanding
of human neurological reaction to the beauty [10]. From a
computer vision point of view, older works used classical
feature descriptors and classifiers [5], [12], while the later
ones tapped in the deep leaning power. Here, Kong et al. [9]
tried different loss functions over features extracted from the
top layers of a pre-trained CNN; Reddy et al. [14] proposed
a visualization technique to inspect the CNN–found relation
between attributes and global score. Codella et al. [4] also
imposed constrains over previous layers in a manner similar to
ours; the difference lies in the fact that they use a unique task
and formulated the loss function such to affect multiple layers,
while we used multiple tasks, but the loss affects directly on
the the exit layer.

Transfer Learning for Multiple task Learning The limited
amount of annotated data available of in a supervised learning
has troubled researchers in the field for a long period. Using
additional domain related, but different data has its appeals.
The direction is called transfer learning and strong reviews
may be followed in now classical work of Pan et al. [13]
and more recently in the one by Zhuang et al. [17]. The
hereby proposed solution follows the track of Caruana [3]
which suggested that when data is scarce or with incomplete
annotation, it is better to learn multiple tasks at once, in
opposition to a single one.

Later, many other works coerced CNNs to approach multi-
ple tasks, including on unlabeled data, to improve the perfor-
mance on the main issue. For instance, Ge et al. [7] injected



Fig. 1. The schematic of the learner in the proposed solution. While various
architectures are tried, the preferred version uses residual networks.

additional data as synthetic unknown classes produced by a
Generative Adversarial Network (GAN) and taught a CNN
to classify those instances. Bendale and Boult [2] enforced
a penultimate activations from pre–trained CNN to structure
additional unlabeled data. Yoshihashi et al. [16] used a hand
crafted hierarchical CNN architecture for open-set recognition
by jointly training for classification and reconstruction.

Our proposal differ from prior art by the nature of task
addresses (regression and classification for aesthetics) and by
the actual solution used, that is to structure unlabeled data by
self-labeling via entropy regularization.

III. METHOD

In this paper we employ a pair of databases. As learner a
convolutional neural network (CNN) is employed. The core
idea is that CNN can address simultaneously multiple tasks.
Out of the two databases, one is labeled, and one is not.
The images have the same nature, as they are photographs
aiming to exhibit aesthetic qualities. The images from one
database contains multiple labels describing a unique image,
thus addressing the problem of multiple instance learning,
while the ones from the second set no label, but in the learning
process, we attach them to a binary classification problem.

In order to formalize the previously mentioned intuitive
ideas, we will denote by {X l,Y l} = {(xli,yli)}Ni=1

iid
≈

p(X l,Y l) the labeled set and the unlabeled by {X u} =

{xuj }
N+M
j=N+1

iid
≈ p(X u). The learned predictor is f : X → Y ,

f ∈ F where F – hypothesis space. The learner will be used
to produce predictions for the unlabeled set: Ŷu = f(X u})};
Yu - results after cleaning the label space Ŷu.

With respect to the probability density functions of the
databases, both p(X l), p(X u) are drawn from the same distri-
bution p(X l), while the labeled space is different from the built
on-line for the initially unlabeled one: p(Yu) 6= p(Y l). The
problem may bee see as a combination of multiple instance
learning (as we learn different tasks) and transfer learning as
we use information from the unlabeled domain to improve the
performance in the labeled one. According to the taxonomy
established by Pan et al. [13] it is a case of inductive transfer
learning, implemented as multi-task learning.

Input: Labeled inputs xli, labels yli. Unlabeled inputs
xuj .
Initialize: Net weights θ0 .
for epoch=1:Nep: do

for b=1:Nbatch: do
Pass the labeled batch b: (xlb; y

l
b):

a. Find predicts ypred = fθb(x
l
b) ;

b. Compute labeled loss Ll ;
Pass an unlabeled batch b: xub
c. Find predicts ŷub = fθb(x

u
b ) ;

d. Determine high confidence predicts
yub = argmax ŷub ;

e. Compute unlabeled loss Lu ;
Compute total loss S(θ) Compute gradient
gu := ∇S(θ) ;

Update on net parameters
θb = θb−1 + gu(θb−1) using SGD ;

end
end
Result: trained network fθ

Algorithm 1: Multi-Task Transfer algorithm.

The solution employed to give labels to the unlabeled
data lies within the self-learning paradigm [15] as it depends
strictly on the learner. The hereby choice, introduced by Lee
[11] is called pseudo-labels; its main ide is that from the
prediction, with respect to each class, it chooses the class with
most confidence. Pseudo-labels is developed from the entropy
minimization [8] by forcing the learner to be more assertive
over the prediction space.

The overall problem can be approached by solving :

fθ(x) = argminθ S(θ)
S(θ) = Ll(yl;xl, θ) + λLu(xu, θ) +R(θ)

(1)

Here R(θ) is a regularizer, implemented as the standard L2

over weights (i.e. R(θ) = α
∑
θ ‖θ‖2). Ll(·) is the loss

function over the labeled part; here, various solutions are
attempted but the preferred version uses L1 regression. λ is a
parameter set empirically in this work to 0.5. Ll(·) is the loss
over the unlabeled set and implemented as cross-entropy :

Lu(xu, θ) =
N+M∑
j=N+1

−yj log ŷj − (1− yj) log(1− ŷj) (2)

where ŷj = f(xj is the corrupted version of the prediction of
the CNN f over an unlabeled input, while yj is the cleaned
version. Following the pseudo–label principle, yj is obtained
by rounding ŷj to be 100% assigned to a single class chosen
as maximum from activations for the SoftMax layers in the
CNN.

Algorithm 1 summarizes the proposed solution.



IV. IMPLEMENTATION AND RESULTS

A. Implementation

We have implemented the proposed method in Python using
the Pytorch library. The code has been accelerated using Titan
X GPU. Image resolution is 227 × 227 and batches for both
labeled and unlabeled are of 32. The optimization has been
carried using Stochastic Gradient Descent. We have trained
for 150 epochs for small architectures (AlexNet, ResNet-34,
ResNet-18) and 100 for the Resnet-50. For the first third
of the training period, the learning was 5 · 104, followed
by decimation upon every consecutive third. An epoch, for
the complete version, took between 1m30sec to 2min30sec,
depending on the architecture.

B. Databases

The largest image database for the study of aesthetics is The
Aesthetic Visual Analysis (AVA) dataset [12]. AVA amounts to
approximately 250,000 images, which that initially have been
retrieved from the DPChallenge.com followed by a crowd-
sourcing based annotation: each image received between 78
and 90 votes with a score ranging from 1 to 10. Yet the broad
nature of the subjectivness in annotation brought its limitation:
80% of the images have a MOS between 4.6 a 6.2; thus, they
are considered ”average” and the standard deviation of the user
score is not small either. The database is not highly helpful to
teach excellence in aesthetics. In this paper, we use a subset
of 50.000 randomly chosen images. Inspired by several task
attempted on this database, we enforce the classifier to separate
the chosen images betwen high quality and low quality (i.e.
binary classification).

Better isolation of aesthetic attributes lies in the smaller
AADB (Aesthetics and Attributes DataBase) by Kong et al.
[9]. AADB creators collected photographic images within
a broad thematic and composition frames from the Flickr
website with a Creative Commons license. They further
cleansed the set by eliminating non-photographic images such
as cartoons, drawings, paintings etc. Followed the advice from
professional photographers, they have selected 11 attributes
relevant to the appraisal of aesthetic value: interesting con-
tent, object emphasis, good lighting, color harmony, vivid
color, shallow depth of field, motion blur, rule of thirds,
balancing element, repetition, and symmetry. Each image was
annotated with a score between -1 and 1 for these attributes;
the average is taken as the global aesthetic score. Overall, the
AADB dataset contains 10,000 images, out of which 1000 are
in test and the rest in training and validation. By averaging the
opinion of multiple users, each attribute has small variation
value. The strength of using carefully selected and annotated
images, allowed AADB creators to obtain a highly competitive
score on AVA database, by training the network mainly on the
AADB [9].

Images from the two databases may be followed in figure
2. For images originated in AADB database, we show also the
annotated attributes.

C. Results

The performance of the proposed algorithm is evaluated by
Spearman Correlation Coefficient, ρ and Mean Absolute Error
for the average global score and Mean Square Error for all at-
tributes and global score. In the experiments, first we establish
a supervised baseline by using only the AADB database and
seeking the best loss function and respectively architecture.
Next, experiments using images from both databases, in the
multi-task transfer learning proposed framework, do follow.

Metric in supervised learning. The first assumed task
is the identification of loss function used to train, in purely
supervised manner, the CNN. Attempted losses have been L1,
L2 and modified Hellinger coefficient (in the sense that here
we have normalized the labels to be between 0 and 1). The
basic network architecture was ResNet-18. Results may be
followed in table I and one may see that L1 loss provided the
best results and it will be further used.

Architecture. The second task was to see the influence of
the architecture over the performance. We have tried AlexNet,
ResNet-18, ResNet-34 and ResNet-50. Following the results
from table I, one may conclude that using larger networks
does not help due to limited amount of data and ResNet-
18 suffices. The baseline is thus composed by ResNet-18
architecture trained with L1 regression loss.

Multi-task learning Different works experimenting on the
AADB database used varying metrics. The performance of
the proposed solution and comparison with prior art may be
followed in table II. The baseline for our solution is supervised
training or a ResNet 18 architecture with L1 loss. One may
easily notice that using the additional task, although vaguely
defined, improves significantly over baseline, thus arguing for
the power of our solution. However, when compared to other
works, this solution does not reach state of the art performance.
For instance, when comparing to the original work of Kong
et al. [9], they have carefully experimented with all attributes
and showed that only 6 are advantageous; using the full set,
as we did, does not present an advantage and was omitted in
[9].

V. DISCUSSION

In this paper we have addresses the problem of aesthetic
evaluation on the short but carefully built AADB database.
We have have successfully improved the baseline performance
by introducing a supplementary task to separate good images
from bad ones from an aesthetic point of view. The self-
prediction was based on the pseudo-labeling concept that is
simple but efficient The small size of the database lead to the
fact the smaller architectures are better than larger ones, as the
latter tend to overfit.
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