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INTRODUCTION 
 
 
In the last decades, the field of image processing became 
more and more attractive, sustained by the continuos 
advance of electrical and computer engineering. The 
increasing of the computing (processing) power allows 
to consider successfully various applications. The 
typical image processing system consists from several 
different building blocks that performs distinctive tasks. 
Among them, the noise removal is one of the most 
common encountered processing steps. 
 
In the same time period, the information engineering 
introduced new concepts and techniques, and amo ng 
them the evolutionary computing emerged as a 
promising solution for several problems. The 
evolutionary computing domain consists of a set of 
nature-inspired algorithms and paradigms, as the neural 
networks and the genetic algorithms. 
 
Many researchers investigated the applications of 
genetic algorithms in image (or signal) processing, 
highlighting the benefits obtained by their use in 
increasing some quality measures or an adaptive 
behaviour of different classical methods. 
 
This contribution investigates the use of genetic 
algorithms in image denoising by non-linear (ordering-
based) filters. The paper proposes a computational 
effective method for the genetic-based filter synthesis, 
that uses a model-free approach (no assumptions being 
made on the noise distribution or the image contents). 
The main originality is that the proposed method uses 
artificially (synthesised) test images for the noise 
estimation and filter design. 
 
The following outlines the plan for the main part of this 
contribution; the next two sections (section 2 - “Image 
Filtering Approaches” and respectively section 3 - 
“Genetic Algorithms - an Overview”) contain the 
statement of the noise removal problem and the basic 
problems related to the genetic algorithm's definition. 
Section 4 (entitled “Filter Synthesis By Genetic 
Algorithms: Classical Approaches And New Methods”) 
describes the proposed method. Finally, section 5 
contains some closing remarks and conclusions, and 
section 6 lists the references used in the paper. 
 

 
IMAGE FILTERING APPROACHES  
 
 
The image processing may be described as a set of 
“Image In, Image Out” operations (for making a 
difference with the image analysis, described as “Image 
In, Description Out”). The area of image processing 
operations mainly refers to the class of enhancement, 
restoration and filtering operations, as described in Jain 
(3). Although there are no exact boundaries between the 
image enhancement and the filtering, the common 
interpretation considers the filtering operation as 
responsible for the noise removal. 
 
Obviously, the image denoising must take into account 
the noise distribution. Although it appears a simple task, 
the filter design becomes more complicated when 
dealing with unknown noises or noise mixtures. The 
ultimate filter must behave constantly well for any noise 
type. 
 
The linear filtering assumes a spatial frequency 
characterization of the noise and is based on two 
dimensional unitary transforms (Fourier, Cosine, etc.) (3). 
Although simple to implement, this type of denoising 
seems to have lost his appeal. 
 
The nonlinear filtering involves local nonlinear 
operations. The main class of filters is the family of rank 
order based filters, described in Pitas and 
Venetsanopoulos (6). The basic principle is to order the 
pixel values within a moving window across the image; 
the order statistics are then used genuine (the rank order 
filters) or as linear combinations (the L-filters) (6). 
 
For a given N-point filtering window (usually square), if 
the selected pixel values for the current position are 
denoted by x1, x2, ..., xN, their corresponding order 
statistics are x(1)Λx(2) Λ ... Λx(N) and the output of the L-
filter for the given position is: 
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The filter weights ai are positive constants, chosen such 
that their sum is unitary (the normalisation condition). 
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The filter design optimises a quality criterion; typically 
this criterion is the MSE (Mean Square Error), as defined 
by equation (3). However, other criteria, such as MAE 
(Mean Absolute Error) (defined in equation (4)) are also 
useful in the quality measurement. 
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In the equations above M and N are the image 
dimensions in pixels, f(m,n) is the value of the original 
pixel at location (m,n) and g(m,n) is the value of the 
measured pixel at the same location. 
 
Different types of filters are obtained by changing the 
weights; if the weights continuously adjust according to 
the changing image (or noise) statistics, the filter is said 
to be adaptive. If the noise distribution is known and the 
noise process is stationary (its statistical parameters are 
constant along the image) the filter weights can be 
uniquely determined as constants. 
 
If the noise is non-stationary, or if the noise distribution 
is unknown, some adaptive algorithms may be used for 
the computing of weights - such as the LMS-class 
algorithms, that use some local statistics for the 
estimation of noise distribution and produce adaptive 
filters. 
 
 
GENETIC ALGORITHMS - AN OVERVIEW  
 
 
The history of genetic algorithms is obviously preceded 
by the history of modern genetics. Starting with the 
framework of Charles Darwin, genetics is structured as a 
real science, and the researches of Gregor Mendel have 
defined the basic concepts of heritage laws and discrete 
structure of genetic information. The biology principles 
and the idea of evolution are now retrieved into 
algorithmic tools and melted with mathematical concepts 
(dynamic programming, stability theory). The result of 
this integration work, led by Holland, is the classical 
genetic algorithm and its many "clones", as described in 
Michailewicz (4). 
 
A genetic algorithm instance is defined by the following 
features: 
• Population: A finite set of possible solutions 

(candidate solutions) of the problem, evaluated in 
the same time. 

• Generative function : The mechanism of producing 
new, improved potential solutions from the current 
population; this function can be split into a 
selection function and a production function. The 
selection function chooses the best candidate from 
the current population, according to the fit of each 

individual; the production function creates new 
candidates by combining the selected ones. 

• Reduction function : The mean for the rejection of 
the ill-fitted candidates from the population. 

• Stopping criterion (or stop function): The checking 
of some conditions, regarding either the population 
(the optimality of the individuals), either some 
external variables (the number of iterations, the 
elapsed time, etc.) 

The selection, production and rejection functions are 
stochastic, depending on particular realisation of some 
independent stochastic processes. 
 
Each individual of the population is formed by basic 
constitutive elements called genes; in the case of 
classical genetic algorithms (that we will consequently 
use) the genes are binary symbols. The fit function is 
problem specific and quantitatively describes the 
adaptation of an individual for the specified optimisation 
task. The individuals are ranked according to their fit 
and the selection function chooses the best fitted 
specimens to form the new generation. There exist 
several selection schemes, based on different decision 
rules about the surviving of an individual; the most used 
are the roulette-wheel selection and the elitist model (4). 
 
The production function assures the population growth 
and evolution by two distinctive methods: the mutation 
and the mating. The mutation function randomly affects 
the genes of the individuals, that means that the 
corresponding values toggle. This mechanism is a 
diversity producer in the next generation; however, the 
changes are seldom (the usual mutation rate does not 
exceed 1% from the total number of genes in the 
population). The mating function produces the so called 
offspring’s: two individuals of the populations produce 
two offspring’s. The usual mechanism is the cross-over: 
the parents switch parts of their genetic code. 
Depending on the model, the children’s replace the 
parents, or compete with them. 
 
The reduction function eliminates the ill fitted 
individuals from the new population, so that the 
population size remains fixed. 
 
The process of selecting, mating, mutating and reducing 
the individuals continues, iteratively, until the stopping 
criterion is reached. The best fitted individual is then the 
(near) optimal solution. 
 
 
FILTER SYNTHESIS BY GENETIC ALGORITHMS: 
CLASSICAL APPROACHES AND NEW METHODS 
 
 
As shown in the previous section, any genetic algorithm 
can be viewed as a combinatorial optimisation solver. 
The use of such a technique for a specific problem is 



obvious - it is sufficient to express the problem in terms 
of optimality, thing that is not so hard (quoting (4) 
“Whatever we do, we optimise something”). 
 
The design of an optimal filter is equivalent to the 
estimation of a proper set of filter parameters such that 
the corresponding filter minimises an error criterion. The 
set of parameters depends strongly on the filter type. 
Chu (1) uses weights for the design of stack filters; 
Ostrowski (5) uses the synaptic weights to characterise 
a neural filter; Harvey and Marshall (2) use the filtering 
window shape and the succession of basic 
morphological operation for the design of alternated 
sequential morphological filters. 
In all these approaches, the set of parameters, properly 
encoded, constitute an individual of a population. The 
population evolves, and a large number of possible 
filters are evaluated on a test and trial basis during the 
evolution. At each stage of evolution, the best 
individuals (the best filters) are allowed to continue their 
development. When the evolution of the population 
stops, the best individual produces the (near)-optimal 
filter with respect to the given error criterion. 
 
In this contribution, we use the same principle for the 
design of a (near) optimal L-filter. The parameters that 
characterise such a filter are its weight's ai . Each of the 
N weights (for an N-point filtering window with a 
determined shape) is uniformly quantized with b bits. 
The desired precision (or tolerance) for the weights 
determines the number of quantization levels. The 
quantization onto 256 levels (b=8) yields to a reasonable 
compromise between the computational speed and the 
tolerance in the computation of weights (less than 0.4%). 
Each individual of the population consists of (N-1)*b 
bits (genes); since the filter weights are linear 
dependent, the N-th weight results from the others (with 
the normalisation condition (2)). 
 
The approach that we will consequently use maximises a 
composite quality measure, that consists from both the 
specified figures (MSE, MAE). This quality factor is 
denoted by Q and has the expression specified by 
equation (4): 
Q=1/(MSE*MAE)   (5) 
Maximising this function means to minimise the 
quadratic and/ or the absolute error, in other words, this 
leads to a filtered image that is very close to the original 
one. 
 
The evolution of the population of filters requires, at 
each generation and for every individual (filter) the 
evaluation of the performance. This evaluation is a time-
consuming process; it consists of the filtering of the 
noise degraded train image and the computation of the 
quality measure for the filtered result. Two main 
drawbacks arise from this approach; they derive from the 
computational amount due to the image size and the 

limitation of the filter optimality to the image and noise 
used for training. 
 
The computational time is proportional to the number of 
generations, the number of individuals that compose the 
population, the filter complexity and the size of the 
training image. For usual size's of a few dozens (up to 
four) individuals and several hundreds' generations (as 
presented by (2)), the necessary computing time is huge 
(equivalent to 104 filtering operations). The filter types 
that were designed until now are not complex: the 
morphological operations used in (2) are simply minimum 
and maximum operations; the stack filtering used in (1) is 
equivalent to Boolean logic operations and the neural 
filter optimised in (5) is implemented by an inner product 
and a look-up table. In spite of this inherent simplicity of 
the operations, the total time required for the filter 
synthesis is prohibitive. All the quoted contributions fail 
to mention the actually physical computing time 
necessary for the design of a single filter. 
 
It is obvious that the reduction of the image size 
contributes to some computational effectiveness. If the 
population size or the number of generations decreases, 
the best individual becomes less adapted (a filter far 
from the optimal one). We obtain the image size 
reduction by considering either a downsampled version 
or parts of the initial training image. The downsampling 
reduces the detail's accuracy and produces artefacts; 
that is why we propose the approach of constructing a 
smaller training image from parts of the initial one. The 
selected parts are representative areas of the considered 
image and must contain the most typical of its features: 
constant intensity areas and edge parts (sharp and 
blurred). Such types of areas can be chosen according 
to some local statistics (grey scale range and variance, 
or contrast scaling, as defined in (3)). 
 
Following this approach, the computational time is 
reduced by up to 1000 times (if the training image is 8 by 
8 pixels). Still the issued filter is image-depended and will 
not provide the same performance on images that are 
much different from the one used for training. 
 
We propose a solution that is somehow close to the 
principle of vector quantization approach: the training 
image is formed by artificial synthesised blocks. These 
blocks are also constant intensity areas (of different 
intensity levels) and different types of edges (sharp, 
blurred, with various orientations). The (near) optimal 
filter obtained from this image behaves equally well on 
all the natural images. 
 
The smallest test image is an 8 by 8 pixel image, 
consisting of two 4 by 4 pixel constant areas (bright and 
dark) and two kinds of 4 by 4 pixel edge areas: sharp and 
blurred. Such a test image is shown in Figure 1. 
 



 

Fig. 1 : Artificial image used 
for filter weights synthesis  
 

 
The image shown in Figure 1 corrupted by small 
Gaussian and impulsive noise, applied on different areas 
of the image (the noise was no mixture) is the training 
image for the genetic algorithm. The genetic algorithm 
was characterised by a population of 20 individuals, 2% 
mutation and 35% recombination probabilities. The 
evolution stopped after 500 generations; the best fitted 
weighting vector obtained is w=(0.0117 0 0.0195 0.2148 
0.5547 0.1484 0.0273 0.0039 0.0195). 
 
The result of the filtering by the synthesised L-filter, 
applied to a mixture noise (Gaussian noise with variance 
100 and 10% impulsive noise) is shown in Figure 2. 
Figure 3 shows the median filtering of the same 
degraded image, for comparison. 
 

 
 
Fig. 2 Filtered image by the proposed L-filter 
(SNR=19.8 dB, MAE=8.47) 
 

 
 
Fig. 3 Median filtered image  
(SNR=19.8 dB, MAE=8.12) 
 
CONCLUSIONS 
 

 
The genetic algorithms provide a valuable method for 
optimisation and have been already used for the 
synthesis of (near) optimal filters for image noise 
removal. For the filter synthesis by a genetic algorithm a 
degraded image and the original image must be 
available; a large number of possible solutions (filters) 
are evaluated on a test and trial basis, selecting just the 
best variants. The approach has two main drawbacks: it 
requires a huge amount of calculations (which can be 
solved by a faster machine) and the original image must 
be available. 
 
This contribution proposes solutions for the announced 
drawbacks of the method. The computation is reduced 
by optimising the filter structure for a very small image. 
The training image is formed by choosing significant 
parts from the image to be processed; these significant 
parts will exhibit the highest edge-like and flat region-like 
characteristics. Still, the knowledge of the non-degraded 
image is necessary. 
 
We propose a method that does not use the original 
image. The filter is synthesised on a small (8 by 8 pixels) 
artificial image. This artificial image contains the 
representative building blocks of a natural image (flat 
regions and edges). This test image is degraded by the 
same (or a similar) noise as the noise affecting the 
natural image, and the genetic algorithm is used for 
optimising the 3 by 3 point's window L-filter that obtains 
the best results in terms of MSE and MAE. 
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