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Abstract. Automatic1 monitoring for the assessment of pain can sig-
nificantly improve the psychological comfort of patients. Recently intro-
duced databases with expert annotation opened the way for pain in-
tensity estimation from facial analysis. In this contribution, pivotal face
elements are identified using the Histograms of Topographical features
(HoT) which are a generalization of the topographical primal sketch.
In order to improve the discrimination between different pain intensity
values and respectively the generalization with respect to the monitored
persons, we transfer data representation from the emotion oriented Cohn-
Kanade database to the UNBC McMaster Shoulder Pain database.

Keywords: Histograms of Topographical features (HoT); Spectral re-
gression; Transfer learning; Pain intensity estimation

1 Introduction

When discussing the necessity of an automatic pain assessment system, several
facts are to be considered: 1. Adult patients, typically, self-assess the pain inten-
sity using a no-reference system, which leads to inconsistent properties across
scale, reactivity to suggestion, efforts at impressing unit personnel etc. [10]. 2.
Patients with difficulty in communication (e.g. newborns) cannot self report and
assessment by specialized personnel is demanded. 3. Correct pain intensity as-
sessment is a critical factor for psychological comfort in the periods spent waiting
at emergency units [9]. A solution is an automatic appraisal of pain with choices
of automatic response of medical personnel alert. Straightforward extensions
envisage remote healthcare surveillance or impaired person assistance.

Although other means of investigation (e.g. bio-medical signals) were dis-
cussed [25], in the last period significant efforts have been made to identify reli-
able and valid facial indicators of pain [20], in an effort to develop non-invasive
systems. One approach is to analyze the patients face using the Facial Action
Coding Systems (FACS) [6], thus identifying action units (AUs) intensity and
computing the pain score via the Prkachin - Solomon formula [21].

1 Copyright by Springer. The final publication will be available at springer.com.
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In this paper we propose a system for face analysis and, more precisely,
for pain intensity estimation. To surmount the variations in the face images,
we propose the use of the here–introduced Histogram of Topographical (HoT)
features. The limitations of the pain annotated database are addressed within a
clustering oriented transfer learning procedure that uses emotion portrait data
to identify the internal representation of the face descriptors and augments the
pain intensity estimation performance.

Further, in section 2 we give a short review of the face based pain inten-
sity estimation systems. Section 3 contains the description of the used features,
pointing out the difference with respect to the state of the art. The procedure
for transfer learning is presented in section 5, followed by implementation details
and results in section 6. The paper ends with discussions and conclusions.

2 Prior art

The majority of the face–based pain estimation methods exploits the Action Unit
(AU) face description previously used in emotion detection. A detailed review
of the emotion detection methods is in the work of Zeng et al. [26].

The pain recognition from facial expressions was referred in the work of Lit-
tlewort et al. [17], who used a previously developed AU detector complemented
by Gabor filters, AdaBoost and Support Vector Machines (SVM) to separate fake
versus genuine cases of pain. Lucey et al. [20] used Active Appearance Models
(AAM) to track and align the faces based on manually labelled key-frames and
further fed them to a SVM for frame-level classification. A frame is labelled as
“with pain” if any of the pain related action units found earlier by Prkachin [21]
are present. Chen et al. [3] transferred information from other patients to the
current patient, within the UNBC database, in order to enhance the pain classifi-
cation accuracy over Local Binary Pattern (LBP) features and AAM landmarks
provided by Lucey et al. [20].

Hammal and Kunz [11] measured the nasal wrinkles and used the Trans-
ferable Belief Model over subsets of the STOIC database in order to predict
the pain for each frame. Kaltwang et al. [14] jointly used LBP, Discrete Cosine
Transform (DCT) and AAM landmarks in order to estimate the pain intensity
either via AU or directly at a sequence level processing. Werner et al. [25] fused
data acquired from multiple sources and information from a head pose estimator
to detect the triggering level and the maximum level of supportability of pain.

3 Histogram of Topographical Features

Global/Local Image Descriptors - State of the Art. Many types of local image de-
scriptors are used across the plethora of computer vision applications [23]. Most
of the solutions computed in the image support domain are approachable within
the framework of the Taylor series expansion of the image function, namely with
respect to the order of the derivative used.
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Considering the zero-order coefficient of the Taylor series, i.e. the image val-
ues themselves, one of the most popular descriptors is the histogram of image
values. Next, relying on the first derivative (i.e. the directional gradient), several
histogram based descriptors such as HOG [4] or SIFT [18] gained popularity.

The second-order image derivative (i.e. the Hessian matrix) is stable with
respect to image intensity and scale and was used in SIFT [18] and SURF [1]
image key-points detectors. Deng et al. [5] used the dominant eigenvalue of the
Hessian matrix to describe the regions in terms of principal curvature, while
Frangi et al. [8] deployed a hard classification of the Hessian eigenvalues in
each pixel (thus identifying the degree of local curviness) to describe tubular
structures (e.g. blood vessels) in medical images.

Summarizing, we stress that all the mentioned state of the art systems rely
on information gathered form a single Taylor coefficient of order zero, one or
two in order to describe images globally, or locally.

The approximation of the image in terms of the first two Taylor series co-
efficients is the foundation of the topographical primal sketch introduced by
Haralick [12], which was further used for face description by Wang and Jin [24].
In this approach, the description of the image is limited to a maximum num-
ber of 12 (or 16) classes which correspond to the basic topographical elements.
Further extension lays in the work of Lee and Chen [16], who used the Hessian
for locating key points and described their vicinity with the histogram of color
values (order zero) and with the histogram of oriented gradients (order one).

We consider that all pixels from a region of interest carry important topo-
graphic information which can be gathered in orientation histograms or normal-
ized magnitude histograms. In certain cases, only a combination of these may
prove to be informative enough for a complete description of images.

Features. In a seminal work, Haralick et al.[12] introduced the so-called to-
pographical primal sketch. The gray-scale image is considered as a function
I : R2 → R. Given such a function, its approximation in any location (i, j)
is done using the second-order Taylor series expansion:

I(i+∆i, j +∆j) ≈ I(i, j) +∇I · ⟨∆i, ∆j⟩+
1

2

[
∆i ∆j

]
H(i, j)

[
∆i

∆j

]
(1)

where ∇I is the two-dimensional gradient and H(i, j) is the Hessian matrix.
Eq. (1) states that a surface is composed by a continuous component and

some local variation. A first order expansion uses only the ∇I term (the inclina-
tion amplitude) to detail the ”local variation”, while the second order expansion
(i.e. the Hessian), H(i, j) complements with information about the curvature
of the local surface. Based on the gradient and Hessian eigenvalues a region
can be classified into several primal topographical features. This implies a hard
classification and carries a limitation burden as it is not able to distinguish, for
instance, between a deep pit or a shallow pit. We further propose a smoother
and more adaptive feature set by considering the normalized local histograms
extracted from Hessian eigenvalues and orientation and respectively gradient.
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Derivation. Frangi et al. [8] used the concepts of linear scale space theory [7] to
elegantly compute the image derivatives. Here, the image space is replaced by
the scale space of an image L(i, j, σ):

L(i, j, σ) = G(i, j, σ)⊗ I(i, j); (2)

where G(i, j, σ) is a Gaussian kernel with variance σ2. The differentiation is
computed by a convolution with the derivative of the Gaussian kernel:

∂

∂i
L(i, j, σ) = σI(i, j) · ∂

∂i
G(i, j, σ) (3)

In the scale space, the Hessian matrix H(i, j, σ) at location (i, j) and scale σ
is defined as:

H(i, j, σ) =

(
Lii(i, j, σ) Lij(i, j, σ)
Lji(i, j, σ) Ljj(i, j, σ)

)
(4)

where Lii(i, j, σ) is the convolution of the Gaussian second order derivative
∂2

∂i2G(i, j, σ) with the image I at location (i, j), and similarly for Lij(i, j, σ) =
Lji(i, j, σ) and Ljj(i, j, σ). Further analysis requires the computation of the
eigenvalues and eigenvectors of the Hessian matrix.

The decomposition of the Hessian in eigenvalue representation acquiesce the
principal directions in which the local second order structure of the image can
be decomposed. The second order hints to the surface curvature and, thus, to
the direction of the largest/smallest bending. The two eigenvalues of the Hessian
matrixH(i, j, σ) are λ1(i, j, σ) ≤ λ2(i, j, σ). The eigenvector corresponding to the
largest eigenvalue is oriented in the direction with the largest local curvature;
this direction of the principal curvature is denoted by θλ(i, j, σ).

Local Descriptors for Pain Description. In the remainder of the work, for each
region of interest Ω, the following HoT descriptors will be used:

– Second order data (Hessian):
• The histogram of hard voting of image surface curvature orientation.
For each pixel in Ω, “1” is added to the orientation of the ridge/valley
extracted by computing the angle of the first Hessian eigenvector, if
λ2 > Tλ.

HH
1 ([θ]) =

1

Z1

∑
(i,j)∈Ω

(θλ(i, j) == [θ]) · (λ2(i, j) > Tλ) (5)

• The histogram of soft voting ridge orientation adds, instead of “1”, the
difference between the absolute values of the Hessian eigenvalues.

HH
2 ([θ]) =

1

Z2

∑
(i,j)∈Ω

(θλ(i, j) == [θ]) · (λ2(i, j)− λ1(i, j)) (6)

The HH
1 and HH

2 histograms produce, each, a vector of length equal
with the number of orientation bins (the preferred choice being 8) and
describe the curvature strength in the image pixels.
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• The range–histogram of the smallest eigenvalue, given a predefined range
interval (e.g. [0,Mλ2 = 30]). The length of this histogram is typically
constructed over Nbin = 8 bins.

HH
3 (k) =

1

Z3

∑
(i,j)∈Ω

(
λ2(i, j) ∈

[
(k − 1)

Mλ2

Nbin
; k

Mλ2

Nbin

])
(7)

• The range–histogram of the differences between the eigenvalues given a
predefined differences range interval (e.g. [0,Mλ12 = 50].

HH
4 (k) =

1

Z4

∑
(i,j)∈Ω

(
(λ1(i, j)− λ2(i, j)) ∈

[
(k − 1)

Mλ12

Nbin
; k

Mλ12

Nbin

])
(8)

– First order data (gradient):

• Histogram of orientation, HG
1 [4]; each pixel having a gradient larger

than a threshold, TG casts one vote;

• Histogram of gradient magnitude, HG
2 . The magnitudes between 0 and

a maximum value (100) are accumulated in 8 bins.

The constants Z1, . . . , Z4 ensure that each histogram is normalized. Experimen-
tally chosen values for the thresholds are: Tλ = 0.1 and TG = 5.

4 Databases

Pain Database. We test the performance of the proposed system over the pub-
licly available UNBC-McMaster Shoulder Pain Expression Archive Database
[19], which contains face videos of patients suffering from shoulder pain as they
perform motion tests of their arms. The movement is either voluntary, or the
subject’s arm is moved by the physiotherapist. Only one of the arms is affected
by pain, but movements of the other arm are recorded as well to form a control
set. The database contains 200 sequences of 25 subjects, totalling 48,398 frames.

The pain intensity is computed with the Prkachin-Solomon pain score [21],
resulting in 16 discrete levels (0 to 15) obtained from the quantization of the
elementary face AUs :

Pain = AU4 +max (AU6, AU7) + max (AU9, AU10) +AU43 (9)

This score for the pain intensity is provided by the database creators, there-
fore acting as a reliable ground-truth for the pain intensity estimation. While in
our work AUs are not computed separately for pain intensity estimation, yet eq.
(9) explicitly confirms that databases build for AU recognition are relevant for
pain intensity estimation.
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Non Pain Database. Noting the limited number of persons available within the
UNBC database, we extend the data used for learning with additional examples
from a non-pain specific database, more precisely, the Cohn-Kanade database
[15]. This contains 486 sequences from 97 persons and each sequence begins with
a neutral expression and proceeds to a peak expression. The peak expression for
each sequence is coded in the FACS system and is given an emotion label.

4.1 Landmark Localization and Areas of Interest

The UNBC-McMaster database is delivered with a set of 66 face landmarks
extracted with an AAM tracker initialized in manual annotated key frames and
applied on each image. In contrast, Cohn-Kanade was manually annotated2.

We consider here that the specificity of the pain-related AUs is represented
with only 22 landmarks from the given set of each of the databases. The reduced
set is showed within figure 1 (a).

The UNBC landmarks are very accurate [19], yet their information is in-
sufficient to provide robust pain estimation. In this sense, Kaltwang et al. [14]
reported that using only points, for direct pain intensity estimation, a mean
square error of 2.592 and a correlation coefficient of 0.363 is achieved.

Due to the specific nature of the AUs contributing to pain, and based on the
22 landmarks, we have selected 5 areas of interest, showed in figure 1 (a), as
carrying potentially usefull data for pain intensity estimation.

Due to the variability of encountered head poses, we started by roughly
normalizing the images: we ensured that the eyes were horizontal and the inter–
ocular distance was always the same (i.e. 50). Out–of–plane rotation was not
dealt with explicitly, but implicitly by the use of the histograms as features.

5 Transfer learning

The target database of the proposed system, UNBC, is highly extensive as num-
ber of frames, but is also rather limited with respect to the number of persons
(only 25) and inter-person similarity. To increase the robustness of the proposed
algorithm, a new mechanism for transfer learning is proposed.

We have inspired our work from the “self-taught learning” paradigm [22].

A source database, described by the un-labelled data x
(1)
u ;x

(2)
u ; . . . ;x

(k)
u ∈ Rn

is used to learn the underlying data structure so to enhance the classification over

the labelled data of the target database:
{
(x

(1)
l ; y(1)); (x

(2)
l ; y(2)); . . . ; (x

(m)
l ; y(m))

}
,

where x is the data and y are labels. According to [22], the data structure could
be learned by solving the following optimization problem:

2 The landmarks were made public by G. Lipori, “Manual annotations of facial fiducial
points on the Cohn Kanade database“, LAIV laboratory, University of Milan, web
url: lipori.di.unimi.it/download/gt2.html.
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(a) (b)

Fig. 1. (a) The features extraction procedure. (b) The transfer knowledge system. Data
internal representation is computed on unlabelled data from Cohn-Kanade database
to make use of the larger number of persons. The reduced data is fitted in order to
predict pain intensity.

minimizeb,a
∑
i

∥x(i)
u −

∑
j

a
(i)
j bj∥22 + β∥a(i)∥1

 ; s.t.∥bj∥2 ≤ 1, ∀j (10)

The minimization problem from eq. (10) may be interpreted as a general-
ization of the Principal Component Analysis concept3 as it optimizes an overall
representation, with the purpose of identifying the best minimum set of linear
projections. Taking into account that the interest is in classification, we consider
that: 1. the source database should be relevant to the classification task over the
target database and 2. original features should form relevant clusters such that,
3. the optimization over the source database preserves local grouping. A modal-
ity to preserve the original data clustering is to compute the Locality Preserving
Indexing with the similarity matrix W:

Wi,j =

{
xT
i xj

∥xi∥∥xj∥ if xi ∈ Np(xj) ∨ xj ∈ Np(xi)

0 otherwise
(11)

where Np(xi) contains the p = 8 closest neighbors of xi. The optimization ran
over the similarity matrix, such that we solved the following regularized least
squares problem over the unlabelled source database:

minimizeB=[b1...bt]

∑
i

((
bT
j x

(i)
u − uj

i

)2

+ α∥bj∥22
)
; i = 1, . . . , k (12)

3 PCA is retrieved by solving minimizeb,a

∑
i ∥x

(i)
u −

∑
j a

(i)
j bj∥22 s.t. ∥bj∥2 = 1 and

b1, . . . bT - orthogonal.
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where uj
i is the j-th element of the eigenvector ui of the symmetrical similarity

matrix W. This process of extracting the data representation (eq. (11) and
(12)) is known as spectral regression and it was introduced by Cai et al. [2]. A
similar transfer learning method was proposed by Jiang et al. [13], with two core
differences: data similarity is computed using a hard assignment compared to
the soft approach from eq. (11) and unsupervised clustering was performed on
the target database.

Finally, the labelled new data is obtained by classification of the projected

vectors z
(i)
l , determined as:

z
(i)
l = Bx

(i)
l , ∀i = 1, . . .m (13)

where B = [b1 . . .bt].
In our algorithm, the neutral image and respectively the images with the

apex emotion from Cohn-Kanade database were the unlabelled data from the
source database, while the UNBC McMaster was the target, labelled, database.
The transfer learning process and the projection equation, (13), were applied
independently on the Hessian based histograms, [HH

1 , . . . HH
4 ] and, respectively,

on the gradient based histograms [HG
1 ,HG

2 ].
The overall proposed system, including the transfer learning procedure, is

visually presented in figure 1 (b) and the method for HoT features extraction is
presented in figure 1 (a).

6 Results

6.1 Testing and training

The used training-testing scheme was the same as in the works of Lucey et al.
[20] or Kaltwang et al. [14]: leave one person out cross-validation. At a time,
data from 24 persons was used for training and 1 person was used for testing.

As the number of images with positive examples (with a specific AU or with
Pain label) is much lower than the one containing negative data, for the actual
training the two sets were made even; the negative examples used were randomly
selected. To increase the robustness of the system, 3 classifiers were trained in
parallel with independently drawn examples and the system output was taken
as the average of the classifiers.

For the actual discrimination of the pain intensity, we used the same model
as in the case of similar works, [20], [14]. We used two levels of classifiers (late
fusion scheme): first, each category of features was input into a Support Vector
Regressor (SVR) (with radial basis kernel function, cost 4 and Γ = 2−5). Land-
marks were not spectrally regressed (i.e were not re-represented with eq. (13) ).
The results were fused together within a second level SVR.

Given a new UNBC image and the relevant landmarks position, the query
to determine the pain intensity for that image takes approximately 0.15 seconds
using single thread Matlab implementation on an Intel Xeon at 3.3 GHz, with
classification performed using LibSVM.
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Fig. 2. Sum of absolute differences when comparing all images without pain and re-
spectively with intense pain to a chosen no-pain reference image. Ideally, we aim for
large values in the left plot and zeros in the right one. A1 refers to the first area of
interest (i.e. around the left eye), A2 to the second one (around right eye), etc.

6.2 Experiments

First, we investigate the capabilities of the HoT features by considering the
following example: we took the first frontal image without pain for each person
and we considered its HoT features as reference; next, we computed the HoT
features of all the images with a pain intensity higher than 5 and of all the
images without pain for each person separately. We plotted the sum of absolute
differences between the set considered as reference to the mentioned images with
and without pain respectively. The results are presented in figure 2. Ideally, large
values are aimed in the left plot and zeros in the right one. We noted that, for this
particular example, the largest contribution in discriminating between pain and
no-pain cases was due to Hessian based HH

1 and HH
2 histograms. Gradient based

histograms lead to inconclusive differences in the case of intense pain, while HH
3

and HH
4 produced large values also for the no-pain case. The histogram type

contribution on the entire database is presented in table 1.
Next, we evaluated the performance of the proposed approach for the task

of continuous pain intensity estimation. The system performance was measured
with the mean squared error (ε2) and with the Pearson correlation coefficient
(ρ) between the predicted intensity and ground truth intensity.

The preferred implementation was by direct estimation of pain and the
achieved values may be followed in table 2. Alternatively, one may consider as
intermediate step the AU estimation, followed by pain prediction using equation
(9); yet state of the art [14] showed that this method produced weaker results.

Feature contribution. In table 1 we reported the achieved relative accuracy in-
crease (decrease) when only specific combinations of histogram types were used.
Landmarks were not used for this experiment. As one can see, all the histograms
contributed positively.
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Table 1. Contribution of each of the histogram types used. We report the Pearson cor-
relation coefficient when the mentioned type of histogram was removed. The reference
is the right-most result (all histograms used). Thus, smaller is the value (i.e. larger is
the decrease), higher is the contribution of the specific type of histogram.

Histogram removed HH
1 HH

2 HH
3 HH

4 HG
1 HG

2 None - HoT

Correlation, ρ 0.330 0.368 0.355 0.358 0.350 0.224 0.41

Table 2. Accuracy of pain intensity estimation. We report the achieved results for
various versions of features used and different methods of learning relevant features.
Features used contained only Hessian based histograms (HH

i - Hess), only gradient
based histograms (HG

i - Grad), both of them forming the so called Histogram of Topo-
graphical (HoT) features; the complete version (denoted by “All”) contained landmarks
and HoT. The relevant features were learned either by means of Spectral Regression
(SR), or by PCA on the Cohn-Kanade database (CK) - via transfer learning or on
the UNBC McMaster database. The Pain is estimated directly by the classifiers which
were trained accordingly.

Learning SR - CK PCA-CK SR-UNBC PCA-UNBC None [14]

Feature Hess Grad HoT All All All All All [14]

Measure Mean Square Error ε2

Pain 3.76 4.67 3.35 1.18 1.17 1.26 1.16 1.21 1.39

Measure Correlation, ρ

Pain 0.25 0.34 0.41 0.55 0.48 0.53 0.49 0.53 0.59

The Influence of the Transfer Learning Method. In table 2, the overall per-
formance, when various possibilities of transfer learning are considered, is also
presented. The internal data representation was learned on the source database
either by Spectral Regression (SR), or by PCA. Other considered alternatives
were to perform no transfer at all, or to extract inner data representation using
the data from the labelled UNBC database. The results showed that specifically
relying on the similarity measure and taking into account a larger number of
persons, the discrimination capability increased.

Comparison with state of art. While, as mentioned in section 2, there exist
several methods that presented results on UNBC McMaster database, yet only
Lucey et al. [20] and Kaltwang et al. [14] reported results on the entire database
and with total separation between users when testing/trainig. However, as Lucey
et al. [20] reported only binary detection results, and we are interested in inten-
sity estimation, we will compare with the method proposed by Kaltwang et
al.[14]. Their best reported performance is for the combination of DCT coef-
ficients with histogram of LBP; the means square error was 1.386 while the
correlation coefficient of 0.590. As one can see, while the correlation values are
smaller, our mean square error is also smaller therefore reducing the chance for
large false positives.
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7 Discussion

In this paper we introduced the Histogram of Topographic features to describe
faces. The addition of Hessian based terms allowed separation of various face
movements and thus pain intensity levels. The robustness of the system was
further enhanced by a new transfer learning method; it was inspired from the
self taught learning paradigm and relied on preserving local similarity of the
feature vectors as learned over a more consistent database in terms of persons,
to ensure that relevant dimensions of the features are used in the subsequent
classification process.

Regarding the addition of the actual features, while their individual contri-
bution was rather small, they complemented each other well, as showed by the
increase of the overall performance when all feature types were used.

The transfer learning from a database with larger number of persons in-
creased the system robustness. More precisely, the solution that did not use the
transfer procedure on some persons lead to better results, with the cost of pro-
viding smaller results on others that are more different from the remainder used
for training. The transfer provided more consistent results overall, a fact which
was proved by the entropy of the correlation coefficient increase from 9.01 to
9.26, enhancing the generalization with respect to person change.

The system provides indeed a number of failures. While the AU 43 (closing
eyes), according to eq. (9), contributes to pain intensity, not all blinks are pain-
related; the system, as in the case of [14], mistakenly associate all blinks with
pain. These errors are rather small and can be easily filtered if the temporal
sequence is considered. Other failures are in cases where the person’s method
of expressing pain is rather different from most of the others; for instance, the
second person widely opens the eyes, instead of closing them, leading the system
to produce false negatives. Other errors are related to the fact that the person
is speaking during the test; false positives are, than, produced. At the end, we
must point to the fact that an unexperienced user’s opinion, if considering only
individual, discontinuous, frames, produces the same kind of errors.
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Operational Programme Human Resources Development 2007-2013 of the Min-
istry of European Funds through the Financial Agreement POSDRU/159/1.5/S/
134398.
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