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Abstract A decomposition is described, which parameter-
izes the geometry and appearance of contours and regions
of gray-scale images with the goal of fast categorization.
To express the contour geometry, a contour is transformed
into a local/global space, from which parameters are de-
rived classifying its global geometry (arc, inflexion or al-
ternating) and describing its local aspects (degree of curva-
ture, edginess, symmetry). Regions are parameterized based
on their symmetric axes, which are evolved with a wave-
propagation process enabling to generate the distance map
for fragmented contour images. The methodology is evalu-
ated on three image sets, the Caltech 101 set and two sets
drawn from the Corel collection. The performance nearly
reaches the one of other categorization systems for unsuper-
vised learning.

Keywords Contour description · Curve partitioning ·
Symmetric-axis transform · Image classification ·
Basic-level categorization

1 Introduction

Designing representations of human visual categories is dif-
ficult because category instances are structurally variable,
e.g. the structures of chairs or living room scenes contain
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subtle geometrical differences, which are difficult to capture
in a model. The variability persists at different levels rang-
ing from the single contour to the entire configuration of
features or parts (Fig. 2 in Basri and Jacobs 1997, p. 452
in Palmer 1999, Fig. 4 in Rasche 2005; Draper et al. 1996).
Design approaches have addressed this variability in vari-
ous ways either implicitly or explicitly. At a lower level, the
suggested representations range from 3D cylinders for parts
(Marr 1982), to template matching for contours—whereby
the distance measure buffers the variability—(Shotton et al.
2005; Opelt et al. 2006; Fergus et al. 2004) to region infor-
mation to circumvent contour variability (Kimia et al. 1995;
Basri and Jacobs 1997; Keselman and Dickinson 2005;
Felzenszwalb and Huttenlocher 2005). At a higher level,
flexible structural descriptions (e.g. Zhu and Yuille 1996;
Nelson and Selinger 1998; Fergus et al. 2007) and de-
formable templates (Mori et al. 2005) have been proposed.
Many of these systems operate on a small set of objects or
scenes with small structural variability and certainly provide
the optimal representations and recognition mechanisms for
those. A first attempt to expand to a larger set of images with
objects exhibiting a larger variability was made by Leibe and
Schiele (2003), who compared different classification meth-
ods. The most comprehensive approach is the one by Per-
ona’s group (Li et al. 2006), which shows an exceptionally
high categorization rate for 101 photographed object cate-
gories; yet even those objects are either of limited geometri-
cal variability or show very similar texture (Li et al. 2006).
Still, there is need for methodology, which is suitable for
categorization of images of arbitrary content, such as a tex-
ture, shape, object or scene, depicted in line-drawings, car-
toons or photos. The human categorization process is ex-
ceptionally good and blazingly fast at this task: it assigns
an image structure to one of 5000 basic-level categories
within a duration of 100–200 milliseconds (Potter 1976;
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Biederman 1987; Thorpe et al. 1996), a process sometimes
called fast categorization in psychophysics literature, e.g.
Joubert et al. (2008). Leibe and Schiele give an elaborate
introduction to the nature of this assignment process and to
some of the difficulties that one faces, when developing such
category representations (Leibe and Schiele 2003).

Description One viewpoint is that representations must be
based on contour information, even though contours seem to
appear partially incomplete in gray-scale images (see Elder
1999 for a recent summary of arguments). Following this
viewpoint, the most concise formulation of what the rep-
resentation should be, was given by Nelson and Selinger,
who envisioned that an object representation is a loose as-
sembly of contour fragments (Nelson and Selinger 1998), or
as they term it the Cubist approach. The fact that the hu-
man recognition process can be easily deceived by struc-
tural visual illusions (Gregory 1997) is evidence that this
type of representation is also used by the human visual
system. Nelson and Selinger apply the approach to ob-
ject detection, for which contours are represented as tem-
plates (see e.g. Shotton et al. 2005; Opelt et al. 2006;
Fergus et al. 2004 for variants). A contour template is how-
ever an unlikely candidate for fast categorization of arbi-
trary image content because of its low degree of abstrac-
tion. A more promising direction is therefore to parameter-
ize contours. For instance, Berretti et al. represent contour
protrusions (corner; high curvature) as a two-dimensional
vector of orientation and degree of curvature (Berretti et al.
2000). They also use a loose representation to describe their
objects and apply their methodology to collections of line
drawings with limited variability. We think that an exten-
sion of this approach to gray-scale images has the greatest
chance of succeeding at fast categorization, in particular the
representation of contours by multiple dimensions to buffer
structural variability. The advantage of a multi-dimensional
representation is that it avoids an a-priori classification: if
a structure is slightly deformed, it still can be compared to
previous instantiations by a mere distance function in the re-
spective multi-dimensional space, whereas if the representa-
tion is based on classified features, there exists the potential
of a combinatorial explosion to deal with structural variabil-
ity (Draper et al. 1996).

Should one decompose contours only? Basri and Jacobs
made the argument to rather use region description to avoid
contour variability (Fig. 2, Basri and Jacobs 1997). Zhang
and Lu also favor region-based methods over contour-based
methods (Zhang and Lu 2004), arguing that the entire re-
gion of a shape serves as a better descriptor than its con-
tours. A region description can express a shape more com-
pactly than its contours but does so only coarsely. But when
moving to gray-scale images and tackling the issue of cate-
gorization, both types of information are necessary. For in-
stance, regions of natural scenes are often highly variable

and are thus little characteristic to this category; it is rather
the irregularity and fuzziness of their contours, which make
them so distinct from many other categories. Analogous, the
silhouette contour of an animal or shape may be the only
way to quickly categorize an image. After all, contours of
gray-scale images appear so fragmented that transforming
the structure in multiple ways may be the key for fast cate-
gorization and not the extraction of just a single descriptor.

Goal and Scope The goal of this study is to introduce
methodology that decomposes any structure (texture, shape,
object or scene) into elementary contour segments and el-
ementary regions (areas), which then are parameterized.
This parameterization could theoretically be carried out with
near-infinite accuracy to ensure that all possible contours
and regions can be distinguished. Such high accuracy were
necessary if an identification task was followed, e.g. the
discrimination of subtly different shapes. But for the pur-
pose of basic-level categorization a limited number of pa-
rameters should suffice. How those parameters are then op-
timally employed for each category—e.g. rather statistical
or as multi-dimensional vector—required a systematic test-
ing and a flexible learning scheme, which we have not im-
plemented yet. We therefore chose to test the parameters in
two extreme forms, a statistical (histogramming) and a ‘pre-
cise’ (vectorial) description. The evaluation shows that our
system can already perform equally good as other catego-
rization systems when those did not use human-supervised
learning (Fergus et al. 2007; Oliva and Torralba 2001).

The task of fast categorization should not be confused
with object search (object detection or localization) as in
Shotton et al. (2008), Heitz et al. (2009) for instance. In
object search, mostly part of the image is interpreted only.
In the task of fast categorization in contrast, the entire im-
age content is interpreted (see also Oliva and Torralba 2001
for arguments for scenes). For that reason we intention-
ally chose a low image resolution for our own image set
(192 × 128 pixels, see Sect. 5.1), in order to force the search
for useful representations. It would seem that this is a dis-
advantage, because at such a low resolution not even the
fine-scale contours sometimes reveal the image content to
the human observer. Still, humans have no difficulty to cat-
egorize images at low resolution, likely because they make
also use of appearance information such as the luminance
contrast along contours or the luminance statistics of a re-
gion. Such appearance information is also exploited in this
study.

2 Contour Description

We firstly survey previous contour approaches (Sect. 2.1) in
order to understand why a novel decomposition and descrip-
tion is required (Sect. 2.2). The proposed decomposition
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starts with a labeling technique (see Sect. 2.3.1), which was
loosely envisioned by Fischler and Bolles (see Sect. 2.2.2)
for the purpose of curve partitioning. But the technique is
extended by a distance measurement, which transforms the
contour geometry into a so-called local/global space (see
Sect. 2.3.2). This space allows to extract two kinds of struc-
tural information: the locations of high-curvature points as
well as geometric parameters suitable for contour represen-
tation (Sect. 2.3.4).

2.1 Previous Contour Approaches

A common method to segment and describe contours for
shape representation is the curvature scale space (Asada and
Brady 1986). Asada and Brady low-pass filter contours with
Gaussian functions at increasing scales to detect points of
highest curvature at which the contours are broken up and
then classified. The study was carried out on a limited set
of shapes whose segments could be described by analytical
functions. A similar scale space was proposed by Mokhtar-
ian and Mackworth (1986, 1992) which operated on a larger
set of shapes and which provided various forms of shape
invariances. These methods continue to be refined and has
also been applied to image retrieval of shapes, e.g. Dudek
and Tsotsos (1997), Zhong and Liao (2007).

Parent and Zucker focus in particular on curves (Parent
and Zucker 1989), providing algorithms which precisely de-
termine curvature parameters; they apply their methodology
to angiograms, satellite images and fingerprints. Similarly,
Wang et al. concentrate on convex boundaries applied to
medical images (Wang et al. 2007).

The studies mentioned so far are optimized for identifica-
tion of a selected set of images. However for categorization
it requires less precise reconstruction but rather the capabil-
ity to assign an image to a ‘coarse’ category: for instance to
discriminate between a fingerprint and a giraffe, the contour
description does not require high precision.

Other contour approaches which are similar to our ap-
proach are the following. Neural networks describe contours
by a hierarchical integration of their local orientations in a
pyramid space (e.g. Serre et al. 2007; Hansen and Neumann
2004; Amit and Mascaro 2003; VanRullen and Thorpe 2002;
Rolls and Deco 2002). Yet such a description is essentially
template matching in a more refined form.

Tu and Zhu propose a framework, in which images are
segmented into a layer of regions and a layer of contours
(Tu and Zhu 2006). Contours are further classified as free
curves, parallel curves and trees. Free curves are trans-
formed into a sequence of oriented bars. Parallel curves,
groupings of contours, and trees are represented as a Markov
structure. Their study does not explicitly address the issue of
contour matching.

The study of Fonseca et al. is also a vector-based ap-
proach (Fonseca et al. 2006): they describe an entire shape

with a single vector, whose dimensions represent trigono-
metric parameters, such as the area and the perimeter. Their
description seems to work well with closed-contour line-
drawings, but has not been extended to shapes or structures
as obtained from gray-scale images.

Martin et al approach the detection of natural scene con-
tours by developing an algorithm based on psychophysical
studies (Martin et al. 2004) (see also Yuille et al. 2004). In
those studies, humans segment images after categorization
has been completed (after 100–200 ms). But to what ex-
tent image segmentation is used for fast categorization is un-
clear and is difficult to elucidate with current psychophysical
methods. Some even claim image segmentation is not neces-
sary for fast categorization, e.g. Oliva and Torralba (2001),
VanRullen and Thorpe (2002).

The contour-description method by Felzenszwalb and
Schwartz is probably most similar to our approach (Felzen-
szwalb and Schwartz 2007). The method initially determines
the geometry for three points of a contour (the two endpoints
and the mid point) and recursively does so by halving the
contour into two segments (see Gunther and Wong 1990 for
an origin of the concept). This generates a very distinct con-
tour representation that can distinguish between a large set
of shapes. The method even fulfills one of the desired cate-
gorization aspects that are listed in the next section (swift-
ness). But it can neither identify individual contour segments
as our proposed method does, nor can the contour descrip-
tions be as easily compared as in our approach (e.g. distance
measurement in multi-dimensional space).

2.2 Categorization Approach

2.2.1 Differing Aspects

The approach to (fast) categorization requires methodology
which differs from the above cited approaches by three as-
pects in particular:

(a) Irregular contours: An essential part of categorization
is the description of natural contours (see also Martin et al.
2004). But also non-rigid objects can possess irregular con-
tour geometry which is very distinct. Consequently, it may
not be ideal to “completely” or “perfectly” partition con-
tours as it has been pursued in shape recognition studies
(e.g. Asada and Brady 1986; Mokhtarian and Mackworth
1986). Rather one should attempt to include this irregularity
(or ‘wiggliness’) as part of the partitioning process. Toward
that direction there exists already work, which proposes al-
ternate versions of the curvature scale space (Fischler and
Bolles 1983; Bengtsson and Eklundh 1991).

(b) Late contour classification: Many studies perform a
contour classification after curve partitioning: e.g. Asada
and Brady classify contours into corners and smooth join,
which in turn are used to create compound changes (crank,
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end, bump or dent) (Asada and Brady 1986); Bengtsson
and Eklundh classify them into straight arcs, curved arcs
with sign of curvature, corners (tangent discontinuities) and
points delimiting arcs, especially inflexion points (Bengts-
son and Eklundh 1991). As already mentioned above, this
classification may prohibit the development of representa-
tions capable of buffering variability. Instead one should at-
tempt to express contour geometries as vectors to circum-
vent any early classification. In short, classification of con-
tours and shapes should occur as late as possible in the fea-
ture extraction process—if at all.

(c) Swiftness: The contour decomposition should operate
as swiftly as possible. Curve partitioning and contour trans-
formation should return detailed but not necessarily high-
precision description. A transformation operating in a single
pass (feedforward) is desired.

2.2.2 Challenges

The challenges of contour description and partitioning have
been best formulated by Bengtsson and Eklundh (1991),
p. 85 bottom: To obtain a good contour description, “[. . . ]
one is faced with two goals of conflicting nature: First, there
is need for finding a qualitative description of overall shape,
hence some simplification and/or smoothing must take
place. This goal is important for recognition and for finding
global structure. Secondly, there is need for high precision
detection of certain characteristics [. . . ]”. In their method,
Bengtsson and Eklundh still employ Gaussian filtering—as
in the curvature scale space—which leads to a coarsening of
the contour at larger scales. But this is in direct conflict with
their second goal. Instead, any coarsening should be avoided
and only a later simplification should be undertaken to ob-
tain geometric parameter values. Moving toward that goal,
Fischler and Bolles’s proposed to merely analyze the con-
tour without altering it (Fischler and Bolles 1983, p. 1016).
They specifically propose an algorithm which “[. . . ] labels
each point on a curve as belonging to one of three cate-
gories: (a) a point in a smooth interval, (b) a critical point,
or (c) a point in a noisy interval. To make this choice the
algorithm analyzes the deviations of the curve from a chord
or ‘stick’ that is iteratively advanced along the curve (this
will be done for a variety of lengths, which is analogous to
analyzing the curve at different resolutions) [. . . ]”. We pur-
sue their type of labeling, yet in an alternate form for two
reasons: (1) their third label appears redundant because a
noisy interval consists of a sequence of critical points when
observed at a more global scale (larger chord size); (2) their
specific goal was curve partitioning but the final goal needs
to be contour description, for which—in addition to the de-
tection of critical points—one also needs to filter for arcs
(bows). This is elaborated next.

2.3 Decomposition

In a first approximation, a curve can be regarded as an al-
ternating sequence of bows and inflexions: a wiggly (of-
ten natural) contour consists of an irregular alternation of
bows and inflexions; an ‘oscillating’ contour consists of an
even alternation; an arc or L feature consists of only a single
bow (with no inflexion). To parameterize such a description,
a bow/inflexion labeling technique is employed (similar to
the above mentioned one), which is extended by a distance
measurement, creating thus distance signatures (Sect. 2.3.1).
Creating these distance signatures for a range of chord (win-
dow) sizes, transforms the contour geometry into what we
call the local-global space, or LG space (Sect. 2.3.2). The
LG space provides two types of information: the location
of potential partitioning points (Sect. 2.3.3) and geometric
parameters for contour description (Sect. 2.3.4). To deter-
mine the global geometry, the LG space is simplified into
a ‘spectrum’, the so-called fraction function, that captures
the alternating behavior of a contour. The global description
is centered around three types of geometries: arc, inflexion
and alternating (wiggly). To describe the fine structure of
a contour, a number of local parameters are defined, which
express for instance whether the contour is either smoothly
undulating or rather a zig-zag.

2.3.1 Labeling, Signatures, Block Function

Given an (open) curve with arc length variable v, a chord
(or window or segment) of fixed length ω is selected and
its endpoints connected by a straight line �. The maximal
deviation (or amplitude) amax between the selected segment
vω and the straight line � is determined. If the segment lies
primarily on one side of the straight line �, the segment is
labeled a bow and the amplitude amax is assigned to a ‘bow-
ness’ signature β(v). If the segment lies on both sides, it
contains a critical point (change of sign; transition) and the
segment is labeled an inflexion, and the amplitude amax is
assigned to an inflexion signature τ(v). Iterating this label-
ing process through the entire contour creates the signatures
β(v) and τ(v). The signatures are set to zero for the bound-
aries where the chord can not be applied.

Three examples of simple signature functions are given.
For a (perfect) arc, the bowness signature is a rectangular
function (Fig. 1a), the inflexion signature is 0. The term sig-
nature block is now used to describe the range of neighbor-
ing values which are above 0. For an arc there exists one
such signature block. For a contour made of a single inflex-
ion, the bowness signature consists of two such signature
blocks; the inflexion signature consists of only one signature
block (Fig. 1b). If the arc is a L feature, the bowness signa-
ture block is a ‘bump’ (Fig. 1c). We later refer to a block of
the respective signatures as simply the bowness block or the
inflexion block.
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Fig. 1 Signatures of elementary contour geometries. a A chord (stick)
of fixed length ω is iterated through the contour and the distance be-
tween the straight line � and the segment determined. If the segment
lies primarily on one side of the straight line, its maximal distance is
attributed to the ‘bowness’ signature β(v), if it lies on both sides the
maximal distance is attributed to the inflexion signature τ(v) [v: arc
length variable]. For an arc the bowness signature is a rectangular func-
tion (for a given window size). b For an inflexion, the bowness signa-
ture consists of two short rectangular functions and a short rectangu-
lar function for the inflexion signature (also called signature blocks).
c Bowness signature for a L feature

Block Parameters To obtain a parametric description the
segment’s geometry, that is outlined by a bowness block β�,
a few simple algebraic manipulations suffice. Its degree of
circularity ζ� is given by the integral:

ζ� =
∫

β�. (1)

To distinguish whether the block describes a L feature or
arc, we define a parameter edginess ε�. It is determined by
multiplying the derivate of β� by a normalized, ramp func-
tion f r , whose width is equal to the block size (with center
value equal 0):

ε� = β�′
f r . (2)

The edginess value is largest for a L feature, it is 0 for a per-
fect arc and negative for a flat bow. The block’s symmetry
υ� is determined by integrating the absolute difference be-
tween the first block half β�1 and its reversed second block
half β�̆2 , which then is normalized (l� = block size):

υ� = 1

2l�

∫ l�/2

|β�1 − β�̆2 |. (3)

A value of 0 means complete symmetry, an increasing value
corresponds to increasing asymmetry.

The block parameters are later used to describe the local
parameters of the contour geometry (see Sect. 2.3.4).

2.3.2 Local/Global Space, Fraction Function

The above signatures are created for a range of window
sizes, ω ∈ [ωmin, lc] (ωmin = minimum window size, lc =
total arc length of contour), generating what is now called
the local/global space, or LG space:

βω(v), τω(v), ω ∈ [ωmin, lc]. (4)

Figure 2 shows the LG space for a wiggly arc: at a local
level (for small window sizes), the contour is noisy and the

bowness and inflexion signature alternate; with increasing
window size, the bowness blocks start to dominate.

To move toward an abstraction of the LG space and hence
the contour’s global geometry, the fraction function is gener-
ated, which relates the amount (or strength) φ of a label with
the window level ω, forming so the bowness- and inflexion-
fraction functions, respectively:

φβ(ω), φτ (ω). (5)

The course of the fraction functions differ for the three con-
tour geometries. For an arc, φβ increases with increasing
window size, whereas φτ decreases (Fig. 2, right column,
graph ‘Fraction’); the rate of increase and decrease depends
on the degree of smoothness (or ‘wiggliness’) of the arc.
For a contour consisting of a single inflexion, the course
of the bowness- and inflexion-fraction function is reversed
(φβ decreasing, φτ increasing; see supplementary informa-
tion, Fig. 1). For an irregular (wiggly) contour, the bowness-
fraction function describes a bump with its maximum lo-
cated at a medium window size, whereas the maximum for
the inflexion-fraction function occurs later (see supplemen-
tary information, Fig. 2). Thus, the fraction functions will
be used to derive global parameters of the contour geometry
(see Sect. 2.3.4).

2.3.3 Partitioning

Seeking to describe irregular contours also faces the diffi-
culty to discriminate when they are accidental, e.g. when a
contour arbitrarily spans several objects and is not character-
istic for the category. For that purpose, some type of curve
partitioning needs to take place. There are two essential cri-
terions for curve partitioning.

(a) Extremely high curvature: if a contour contains an
‘end’—a turn of 180 degrees—it is partitioned at the point
of highest curvature, because an end outlines an area, which
is described more precisely by a region representation (see
Sect. 3). An exception to this rule should be when the con-
tour is part of a perfect arc larger than 180 degrees. Exem-
plifying the partitioning rule, an ellipse, an oval or a U-turn
is partitioned into its 2 elongated arcs. After application of
this rule, any contour appears either as elongated in a coarse
sense, or as smoothly circular.

Ends can be easily detected by analyzing the bowness
signature from local to global: whenever its amplitude ex-
ceeds the length of a half circle with radius equal to half
the window size (βω(v) > ωπ/2), then the location of the
maximum amplitude is selected as a potential point of par-
titioning. To recognize whether an end is part of a large
smooth arc, the block’s circularity ζ� is used. If the circu-
larity value exceeds a threshold, it is assumed to be part of
a circular structure, such as a smooth arc. But the rule also
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Fig. 2 (Color online) Local/global (LG) space of a wiggly arc. Top
right: sample contour with starting and center points marked as aster-
isk. Left column: LG space: signatures β(v) (black) and τ(v) (grey)
for 10 different window sizes [x-axis = arc length variable v]. Sig-
nature block characteristics (determined for large ones only): blue
marker = ε�; green diamond = υ�; plus sign = ζ�. Fraction: fraction

φ of bowness and inflexion blocks per window size. Spectra: Green
diamond: maximum of symmetry value; black circle: maximum β am-
plitude; plus sign: maximum of ζ . Dimension Values: arc, transition,
alternation, bnd = curvature, edginess, symmetry. Integrated Signa-
tures: bowness (black), inflexion (gray) and edginess (blue)
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selects any near-circular symmetric shape like square, pen-
tagon, hexagon and so on. To further discriminate between
the two cases it requires a clearer understanding of how to
partition and represent such shapes. However, such cases are
extremely rare in gray-scale images where contours often
appear fragmented. It has therefore not been pursued further
in this study.

(b) Symmetry-asymmetry: if a contour contains a seg-
ment which is very symmetric, it may be part of an object
and is therefore preferably partitioned or extracted. Sym-
metry is a very general characteristics and can describe the
symmetry of individual signature blocks or of a segment de-
scribed by a sequence of blocks. A partitioning following the
symmetry criterion has not been pursued either, as it also re-
quires a clearer idea of how to express symmetry at a more
global level. The issue may lie in a similar vein as the parti-
tioning and representation of symmetrical shapes.

2.3.4 Geometric Parameters

We attempt to express the geometries as a set of scalar para-
meter values, such that the geometries can be compared by
a distance measure, e.g. the radial-basis function. We nom-
inally distinguish between global and local parameters: the
global parameters describe the types of contour geometries
as outlined above (Sect. 2.3.2); the local parameters rather
describe the fine structure of a contour.

Global Parameters One possibility to capture the range of
global geometries is by counting the number of alternations
of the bowness blocks. For an arc the value is just one, for
a single inflexion it is two, for a sinusoid of 540 degrees it
is three, and so one. Using a single parameter for the global
description runs the risk that the local dimensions dominate
the distance measure. To prevent this the global geometry
is classified into three ‘elementary’ types: arc, inflexion and
alternating. Although we warned about such a classification
earlier, we still allow for combinations of these geometries
by choosing soft criteria for two types:

− arc (a): A contour is classified as an arc if its bowness-
fraction function increases continuously. The parameter
value is either 0 or 1.

− transition (t): A contour is classified as a single inflex-
ion if the inflexion-fraction function increases at a global
level. The parameter value corresponds to the maximum
value of the inflexion-fraction function.

− alternating (w): A contour is classified as alternating, if
it did not clearly classify as either arc or transition. To de-
termine the alternating value, it requires the selection of a
window size, that represents the ‘oscillating’ characteris-
tic optimally. This window size is found by taking the ra-
tio between the bowness- and inflexion-fraction function

and selecting the window size, whose ratio value is clos-
est to one. For that ‘optimal’ window size, the logarithm
of the number of bowness blocks is used as the alter-
nating value w (see window size = 7 for the alternating
contour shown in the supplementary material, Fig. 2).

A contour can have scalar values for more than one of the
three parameters. For instance, a sickle shape - a 180-degree
arc with a small straight line extension - is classified as tran-
sition but also as alternating due to the slight increase in the
inflexion-fraction function caused by the extension (see sup-
plementary material, Fig. 3).

Local Parameters The local parameters are determined us-
ing the bowness block parameters (Sect. 2.3.1). One parame-
ter describes the overall curvature of the contour, which can
also be regarded as a global parameter in case of an arc, but
is a rather local aspect for the transition or alternating geom-
etry. The symmetry measure expresses only local regularity.

− curvature (b): is defined as the maximum amplitude of
the bowness space multiplied by the sum of values for
the arc and the transition parameter, b = maxv,ω(βω(v))

(a + t). If the global geometry has been classified as al-
ternating then the curvature just corresponds to the max-
imum, b = maxv,ω(βω(v)).

− edginess (e): is defined as the average 〈〉 of all edgi-
ness values for all k bowness blocks across window size,
e = 〈ε�

k,ω〉.
− symmetry (y): is defined as the maximum value of all

bowness blocks across window size, y = maxk,ω υ�
k,ω.

Alternate definitions are possible and several variants
were tested. For the present categorization study, the vari-
ants did not change the results significantly (but may so if
identification was tested).

Representational Capacity We now sketch how the para-
meters can express previously suggested elementary fea-
tures and use in particular Asada and Brady’s terminology
(Asada and Brady 1986, see their Fig. 1):

(1) A corner (L feature) and smooth arc can be described by
a high value for the arc parameter and differing values
for the edginess parameter (a L feature has a high value
for e).

(2) A smooth join and crank are expressed as a high value
for the inflexion parameter (if the element appears iso-
lated) and differing values for the edginess parameter.
(In Asada and Brady’s Fig. 1, the crank consists of a
very sharp angle and would be partitioned in our ap-
proach).

(3) A bump is represented as an above-0 value for the alter-
nating parameter and an above-0 value for the edginess
value.
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Fig. 3 (Color online) Summary of the decomposition (σ = 1,3,5).
Top right. Contours of all three scales overlayed. Left column: Con-
tours in blue, with line thickness corresponding to mean contrast (cm).
Gray-scale pixels represent output of fuzziness (blob) filter. Right col-

umn: Contours in cyan with start- and end-point marked as black dots;
highest curvature marked by blue triangles or magenta circles; sym-
axes orange dotted with red circle marking pf x and red dot marking s2.
+: intersections of sym-axes
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Whereby cases one and two are geometrically exact, case
3 is not expressed as accurately anymore. If the contour is a
natural contour, then it may be irrelevant, but if it is part of
an object or scene, a more specific description may be de-
sired. In order to be more specific, one had to include more
parameters, or to pursue structural relations.

2.3.5 Appearance Description

The appearance dimensions are derived from a number of
aspects:

− contrast (cm, cs ): is the luminance difference along the
contour. For a given contour, the average and the standard
deviation of the contrast difference for all contour points
is taken, resulting in dimensions cm and cs , respectively.

− fuzziness (fm, fs ): expresses the degree of fuzziness
along the contour. Contours of natural scenes show often
a high degree of fuzziness, in particular the ones lying
within a textured region. Analogous to the contrast val-
ues, the average and standard deviation is determined for
each contour, but which are taken from a preprocessed
image. Preprocessing occurs with a blob filter selecting
isolated pixels or a neighborhood of pixels whose con-
trast values ‘pop-out’.

− isolation (r): quantifies the amount of region around a
contour, or put differently the degree of isolation within a
structure. Contours or shapes can appear isolated, for ex-
ample the circle of a sun (or moon) in a landscape scene,
or the rectangle of a picture in a room scene. This degree
of isolation is characteristic as well and must be part of a
contour description.

The dimension r is determined from a so-called isolation
map IM, whose generation is explained in the next section
(specifically Sect. 3.1). For each contour the value of r is the
average of the corresponding pixels taken from IM.

2.3.6 Summary

The derived geometric parameters are called arc a, transi-
tion t , alternating w, curvature b, edginess e, symmetry y.
In addition to those, the parameters orientation (o) and con-
tour length (l) are used (Sect. 2.3.4). The appearance pa-
rameters are called isolation r , mean contrast cm, contrast
variability cs , mean fuzziness fm and fuzziness variability
fs (Sect. 2.3.5). The parameters values are scalar and are
used to span a 13-dimensional contour vector c,

c(o, l, a, t,w,b, e, y, r, cm, cs, fm,fs), (6)

which is used for descriptor matching (Sect. 5.3). More para-
meters could have been extracted, that describe for instance
the ‘skewness’ or ‘flatness’ of an arc, but it is assumed that
these suffice to perform the categorization of the chosen im-
age sets (see Sect. 5.1).

3 Region Description

Previous Approaches The goal of region description is to
represent relations between contours by measuring and rep-
resenting distances between them. The common method
to do this is the symmetric-axis transform (SAT) (Blum
1973), which has already been used in many ways. Asada
and Brady generate smoothed local symmetries (Asada and
Brady 1986), by taking the pair-wise distances between pix-
els of parallel contours, a straightforward method to gen-
erate the symmetric axis (sym-axis). In other studies, the
SAT model aims at evolving sym-axes which represent the
shape with high accuracy, applied for instance to the analy-
sis and/or representation of medical image structures, e.g.
Ogniewicz and Kubler (1995), Zhu and Yuille (1996), Zhu
(1999), Niethammer et al. (2004). The group by Zucker clas-
sifies the symmetric-axes into 4 orders (Kimia et al. 1995;
Siddiqi et al. 1999; Pelillo et al. 1999): 1st order is a U-
shaped curve (protrusion; half an ellipse), 2nd order is a
neck (two half-way fused circles), 3rd order is an oval (bend)
and 4th order is a circle (seed). For their work, these classi-
fied sym-axes represent elementary structures and are used
to describe various shapes.

Categorization Challenges But as pointed out above al-
ready, such a classification bears the potential of a combina-
torial explosion and one should attempt to express such con-
tour relations as vectors as well. Toward that goal we also
employ the symmetric-axis transform, but in a more general
form. We implemented the transform such that it can also
be evolved for open contours—and not only for closed ones,
which allows us to use any area in an image that is character-
istic for a category. In addition, we also use another distance
relation, which has already been introduced in the contour
section (dimension r under Sect. 2.3.5). Both distance rela-
tions can be obtained from a distance map. Distance maps
can be generated in a variety of ways (Rosenfeld and Pfaltz
1968; Fabbri et al. 2008), but we are not aware of an imple-
mentation that generates the map for arbitrarily fragmented
contour images. To achieve that, we will use a neurally in-
spired wave-propagation process.

3.1 Distance Relations

Given a binary contour image, CM(x, y), its contours
are propagated using a wave-propagation process (Rasche
2007), which is carried out in a single sweep, meaning there
are no iterations necessary to obtain the sym-axes (see sup-
plementary information, Fig. 4a and b). From the distance
map, one can derive two types of distance relations. One is
the distance relation between neighboring contours, which
is given by the crests (rims) in the landscape. Those were
called symmetric axes by Blum (1967, 1973). They can be
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easily detected by convolving the distance map with a high-
pass filter, followed by thresholding. The other type of rela-
tion is the degree of isolation of a contour, which is rather
a global distance relation. It is obtained by convolving the
distance map with a negative-peaked high-pass filter.

Extracting Sym-Axes Map (SM) The distance map DM is
convolved (∗) with a high-pass filter Fhigh and thresholded
by the function θ to obtain the symmetric map SM:

SM(x, y) = θ(DM(x, y) ∗ Fhigh(x, y)) (7)

SM contains scalar values only at the location of the sym-
axes (see supplementary information, Fig. 4b). The optimal
filter input represents the conic shape generated by the con-
tour of an isolated circle (a single sym-ax point).

Determining the Isolation Map (IM) DM is convolved
with a high-pass filter with negative peak, F−

high, at the loca-
tion of contour pixels, CM(x, y) = 1. The convolution out-
put is now called an isolation map, IM:

IM(x, y) =
{

DM(x, y) ∗ F−
high(x, y), CM(x, y) = 1,

0, else.
(8)

Contours that are isolated with reference to the entire struc-
ture return a high value; contours internal to a structure re-
turn a low value (see supplementary information Fig. 4c). In
particular, high curvatures show high values, because they
emit radially propagating waves, which represent the opti-
mal input to the negative-peaked high-pass filter. For a con-
tour, the “isolation” distance is described by the dimension
r , which is defined as the average of its corresponding IM
values. In contrast to the SM, the IM represents how iso-
lated a contour is with respect to the entire surrounding re-
gion and not only with respect to its nearest-neighbor con-
tour. The optimal filter input is an isolated, single contour
point. For an isolated straight line, the endpoints in IM show
the highest value, with decreasing values toward the line’s
center.

3.2 Parameterizing the Symmetric-Axis Signature

Geometry The symmetric map is partitioned at points of
intersections. Because the sym-axes are temporally evolved,
one can explicitly use the temporal dimension of the sym-
metric axis, that is the distance values s in dependence of
arc length v, now called the symmetric signature (see sup-
plementary information, Fig. 5). To describe the signature as
thoroughly as possible, the following parameters are used:
its two endpoint values, s1 and s2; its mean value sm; the
angle α taken from the signature’s slope. If the signature
contains a minimum or maximum between the endpoints
then the location and value of that extremum is taken, sf x

and pf x respectively. In case of absence of an extremum, s2

serves as this extremum information. An elongation parame-
ter e is determined, which is defined as the ratio between the
total arc length of the sym-axis in the image plane and the
mean distance sm. Orientation (o) and curvature (b) of the
signature in the image plane are two additional geometric
parameters. The curvature was defined as the maximal dis-
tance between the sym-axis points in the image plane and
the straight line connecting its ends.

Appearance The same appearance parameters are added
as for the contours, but are based on the area spanned by
the two contours. In addition to the mean and standard devi-
ation, the range value for the intensity values is determined
as well, cm, cs and cr , respectively. The same parameters are
also determined for fuzziness, taken from the preprocessed
image.

Summarized we have the following 15-dimensional vec-
tor for an area a:

a(o,α, e, sm, s1, s2, sf x,pf x, b, cr , cm, cs, fr , fm,fs). (9)

4 Implementation

Contour Description Window sizes were generated in in-
crements of

√
2. The smallest window sizes were ω =

[5,7,9,11,13] (number of contour pixels) for scale σ = 1
and ω = [5,9,13] for larger scales. The signatures are nor-
malized by their window lengths (amax/ω)—this is a crude
approximation but computationally cheap. For that reason,
the threshold for detecting potential ends was set heuristi-
cally (value = 1.2) as well as the threshold for detecting
circularity (value = 90). φ is determined as the fraction of
signature values that are above 0 for each window size, e.g.
φβ(ω) = [∫

v
sgn(βω(v))]/lc .

Two DOG filters are used to determine the fuzziness val-
ues: a 3 × 3 pixel with standard deviations of 0.5 and 1.0;
a 5 × 5 pixel with standard deviations of 1.0 and 2.0. The
output of both image convolutions is summed to a single im-
age, from which fm and fs are determined for each contour.
The remaining dimensions are determined without notable
issues.

To find points of highest curvatures, the edginess values
of the individual signature blocks are integrated across win-
dow sizes forming so an edginess signature, whose maxima
denote those points.

Region Description The contours are propagated using a
thresholding mechanism inspired by our neural network im-
plementation of a propagation process (see Rasche 2007 for
details). The wave consists of a subthreshold propagation
process and an active propagation process. The high-pass
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filter Fhigh to compute the symmetric map SM is a (fixed-
size) DOG with standard deviations of 0.833 and 1.5. This
crude filter approximation is made for reason of simplicity,
because the use of the optimal, distance-dependent filter is
computationally much more expensive.

The negative-peaked high-pass filter F−
high to compute

the isolation map IM is a DOG with standard deviations of
4.833 and 5.1667. The large filter size ensures that even the
contours of small objects on a contour-free background are
distinctively encoded, e.g. the contour of a bird in the sky.

Images, Processing Time Contours are detected employing
the Canny algorithm (Canny 1986), using the implementa-
tion of Matlab’s image processing toolbox. Other edge de-
tection algorithms could have been employed instead. The
dimension values were normalized to a range of 0 to 1.

The average processing times for a Caltech image at scale
σ = 1 and an average resolution of ca. 200 × 300 pixels
using an Intel 2 GHz was: 390 ms for the Canny algo-
rithm; 392 ms for the appearance information (without re-
gion description); 1270 ms for the extraction of contour seg-
ments from the image; 2500 ms for the generation of the
LG spaces and the derived spectrum and parameter descrip-
tion; 3225 ms for contour propagation, sym-axis extraction
and parameterization. Summarized, the entire computation
for an image is approximately 7.7 seconds (including inbe-
tween saving of data files), but our computations are not as
optimized as the C-supported Canny algorithm. For scale
σ = 5, the average processing time is 3.4 seconds.

5 Evaluation

The decomposition output was tested using two extreme
forms of representation. In one form, the parameters were
used merely in a statistical sense, by creating histograms
of the parameter values for all descriptors of an image
(Sect. 5.2). In the other form, the parameter values were used
as dimensions of a vector (as summarized in (6) and (9);
Sect. 5.3). The optimal category representation is likely a
mixture of those two extreme forms of representation and
is individual to each category. But to develop such indi-
vidual category representations it required systematic test-
ing on a larger scale, which has not been implemented yet.
The performance of the system is therefore tested with these
two extreme forms of representation only. For both types
of analyses, the radial-basis function was employed as dis-
tance measure; and a number of image searches were car-
ried out to demonstrate that the requirement for ‘graceful
degradation’ for categorization systems is fulfilled (Leibe
and Schiele 2003).

5.1 Image Sets

In order to be faced with the largest amount of structural
variability possible, the decomposition success is evaluated
on the Corel and Caltech 101 collection. The images of the
Caltech collection contain primarily single objects with ei-
ther relatively clear silhouette and limited geometric vari-
ability or with very similar texture across instances (Li et al.
2006). The categories can therefore be regarded as subordi-
nate categories. The images of the Caltech collection were
downsampled to a size of approximately 300 × 300 pixels,
most of which are already at that size.

To test also complex scenes—containing multiple ob-
jects and ‘smeared’ object contours—the Corel collection
was used. Two sets of images are drawn from it. One set
is the Urban&Natural set as chosen by Oliva and Torralba,
who selected images from 8 super-ordinate categories (Oliva
and Torralba 2001) (mountain scene, forest scene, street
scene, highway scene, . . . ; resolution of 256 × 256 pixels).
The other set is chosen by us and is created as follows.
By design, the images of the Corel collection are organized
into 600 classes (100 images per class). Approximately 360
classes correspond to a human basic-level or subordinate
category (Rosch et al. 1976; Oliva and Torralba 2001). The
classes are of all types of structure (textures, isolated ob-
jects, complex scenes) and this image set shows therefore
the largest variability. The image classes were pooled into
112 basic-level categories. Examples of basic-levels are (in
decreasing proportion): wild animals (27, 4.5%), patterns
(25, 4.2%), sports (25, 4.2%), flowers (17, 2.8%), aircrafts
(16, 2.7%), models (13, 2.2%), birds (11, 1.8%), water an-
imals (10, 1.7%), cars (9, 1.5%), canyons (7, 1.2%), differ-
ent cultures (7, 1.2%), mountain sceneries (7, 1.2%), ships
(7, 1.2%). Such a categorization is sometimes ambivalent
because many scenes can be assigned or interpreted in vari-
ous ways as humans possess different entry-level categories
(Jolicoeur et al. 1984), also called perception subjectivity.
To avoid a strong perception bias, the classes were catego-
rized by two persons (the author and a research assistant).
We later refer to this simply as the Corel set. For this image
set we chose a resolution of only 192 × 128 pixels.

The subsample size was 10 images per category for the
Caltech and Urban&Natural set (1010 images per entire sub-
sample) and 10 percent images per category for the Corel set
(typically 10 or 20 images; 3570 images per entire subsam-
ple), for both the learning and testing procedure. The images
for a subsample were selected randomly and categorization
performance was tested with 3 different subsamples using
cross validation.

5.2 Histogramming

For the two descriptors for a given image (contours and
areas), a 10-bin histogram for each dimension is con-
structed. The histograms are then concatenated to form a
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Fig. 4 Categorization results of
histogram matching for partial
dimensionality for the Caltech
(a) and Corel (b) set. ‘F’ full
dimensionality (280
dimensions); ‘c’ and ‘a’:
complete contour and area
descriptors (130 and 150
dimensions); ‘c-geo’ and
‘a-geo’: geometrical dimensions
only (90 dimensions each);
‘c-app’ and ‘a-app’: appearance
dimensions only (40 and 60
dimensions) for 4 different
spatial scales (σ = 1, 2, 3, 5).
Error bars denote standard error
of 3-fold cross validation

280-dimensional image vector. The image vectors for one
category subsample were averaged. The performance for
correct categorization was between 9.8 and 12.3 percent for
all 4 scales for the Caltech and Corel set (Fig. 4, labeled
‘F’). Omitting the distracter category (‘Google’ images in
Caltech collection) decreased the performance by 0.3 per-
cent only. For the Urban&Natural set the performance for
correct categorization was ca. 40 percent for scale 3.

To estimate the contribution of the individual descriptors
and its dimensions, the performance was also determined
when only a subset of dimensions was used. When using
only the contour parameters (130-dimensional image vec-
tor; labeled ‘c’), the performance decreased to a value be-
tween 6 and 9 percent. For the geometrical parameters of
the contour descriptor (90-dimensional vector, ‘c-geo’), the

performance remained approximately the same for the Cal-
tech collection, but rather dropped for the Corel set down to
4 to 6 percent, which exposes the characteristic, that the Cal-
tech set contains objects with limited geometric variability.
When only the appearance parameters were employed (‘c-
app’), the performance decreased slightly for the Caltech set
but remained about the same for the Corel set. This reveals
that the strongest cue for the Caltech categorization perfor-
mance is the set of geometric parameters, but for the Corel
performance it is the set of appearance dimensions. A simi-
lar performance pattern can be observed for the area descrip-
tors (‘a’, ‘a-geo’, ‘a-app’). The complete area vector yielded
a higher performance than the complete contour descriptor
for both image sets. The performance for the appearance di-
mensions of the Corel set is marginally larger than the one
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Fig. 5 Categorization
performance for
single-dimension knock out for
the Caltech collection (270
dimensions each). The
performance for full
dimensionality (280
dimensions) is indicated as
black dashed line at 12.3
percent. Error bars denote
standard error of 3-fold cross
validation

for the complete descriptor and is even nearly as high as the
performance for full dimensionality. Clearly, the representa-
tive power of the individual or group of dimensions do not
add linearly in the histogramming approach.

To estimate the significance of individual dimensions, the
categorization performance was tested when single dimen-
sions were knocked out (270-dimensional vector, Fig. 5).
The performance decreased only slightly (ca. 0.3 percent),
which demonstrates that none of the dimensions is crucially
more significant than any other one.

A large number of histogramming variants were tested,
such as two-dimensional histograms—pairings of dimen-
sions—with up to 1000 dimensions in total, as well as
different bin sizes. Various learning schemes were ex-
plored as well. But substantially higher performance was
not achieved. It seems that a categorization performance of
ca. 12 percent is a robust result but it also appears to be an
upper limit.

Figures 6 and 7 in the supplementary material show im-
age searches for the entire Corel collection (best and worst
sortings shown).

5.3 Descriptor Matching

The purpose of this part of the evaluation is to explore how
specific single vectors or group of vectors can be. In a learn-
ing phase, descriptors were searched, that are characteristic
to a category, so called category-specific descriptors. They
can be regarded as a precursor of a Cubist representation.
The category-specific descriptors were obtained by sorting
images using individual descriptors. In a testing phase, the
list of collected category-specific descriptors were matched
against the descriptors of individual images of another sub-
sample to determine the strength of category selection. We

also tested categorization performance using those category-
specific descriptors, but we did not achieve substantially
higher performance than with mere histogramming (previ-
ous subsection). For that reason we resorted to this type of
image search.

In the learning phase, each descriptor (e.g. the contour
vector of a L-feature of a chair) was compared to all other
descriptors of the remaining images in the subsample and
the distances sorted by decreasing similarity. The category-
specificity of a descriptor was defined as the percentage of
images belonging to the same category (chair) for the first
100 images of the corresponding first 100 similar descrip-
tors. Only descriptors with a minimum specificity of 2 per-
cent were kept, called the category-specific contours (Figs. 6
and 7; see Figs. 9–14 in supplementary material for all scales
and both sets; for sym-axes see Figs. 15–20). The category
specificity could reach up to tens of percent and was 3.5
to 8 percent in average: for the Caltech collection the av-
erage was 7.5 percent for the contour and area descriptors;
for the Corel set the average percentage was lower by ca
1.0 for each descriptor. Differences across scales were small
(ca. 1 percent). That the representative power of single de-
scriptors is not confined to the selected categories is demon-
strated with image sorting using the entire Corel collection
(60 000 images, Fig. 8; see Fig. 8 in supplementary material
for an example for sym-axes).

In the testing phase, the descriptors vj for each image,
were matched against the collected category-specific de-
scriptors vi of each category, resulting in a distance ma-
trix Dij . The shortest distance for each collected descriptor
was selected di = maxj Dij . This distance vector reflects the
optimal match between a selected image and the Cubist cat-
egory representation. The distance vector di was sorted and
the first 2, 5 and 10 differences summed (δ2, δ5, δ10 respec-
tively), followed by determining the category-specificity for
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Fig. 6 Category-specific contours from spatial scale σ = 2 for all 101
categories of the Caltech collection. Contours were obtained by image
sorting and selecting those, which preferably found their own category

images (average 3-8 percent, for those showing any specificity at all;
maximum percentage larger than 50 percent, see also Fig. 8). The con-
tour thickness corresponds to the average contrast value cm



Int J Comput Vis (2010) 87: 337–356 351

Fig. 7 Category-specific contours from spatial scale σ = 2 for the Urban&Natural collection. See previous figure for more details

Fig. 8 Similarity-based contour search for all contours of the entire
Corel collection (60 000 images) for σ = 3. The contour of the first
image in each row is the selected sample contour, the remaining im-

ages in each row contain the most similar contours. The percentage on
the left denotes correct basic-level categorization for the first 99 similar
images
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each δ as before. A systematic search was carried out for
the maximally performing δ value, separately for contour
and area descriptors for 3 different scales (σ = 2, 3, 5). The
maximal value was in average 18 percent for the Corel set
and 24 percent for the Caltech collection, demonstrating the
high distinctness of the vectors. The performance difference
for the two image sets can again be explained by the differ-
ing degree of structural variability of categories within the
two image sets.

5.4 Summary

The performance for correct categorization was 10–12 per-
cent for the Caltech and Corel set and ca. 40 percent for
the Urban&Natural set. This seems low as compared to
other categorization attempts (Oliva and Torralba 2001;
Fergus et al. 2007), but it should be emphasized that the
achieved categorization percentages of those systems were
obtained with help of human-supervised learning, that is
individual features or descriptors were given as category-
specific ‘clues’. Thus, the performance of our system is well
comparable to the other systems and is relatively high given
that only histogramming matching was used.

As noted, we had also tried to perform a categorization
task using the individual descriptors, but we were not ca-
pable yet to obtain a higher categorization performance. In-
stead, we demonstrated the specificity of the vectors by a
search performance (Sect. 5.3), which again turned out to be
relatively high, given that the maximum selection took place
only for performances for one descriptor type for one scale.

A number of robustness tests were carried out, such as
a different distance function (Euclidean), or different defin-
itions for some of the dimensions. All these variations did
not alter overall performance significantly, suggesting that
the decomposition is generally applicable and is not biased
toward a specific image set.

6 Discussion

6.1 Further Comparison to Other Approaches

Categorization is sometimes understood as part of a generic
object recognition process (see Keselman and Dickinson
2005 for a concise history of object recognition trends).
But the human visual system solves different recognition
tasks by different processes. Fast categorization is only car-
ried out for canonical views (Palmer et al. 1981), which
are structures seen from familiar viewpoints—as depicted
in the Corel or Caltech collection for instance. And given
the fact that the process can be easily deceived by visual
illusions, one can regard fast categorization as a rather su-
perficial judgment of its image content—and not a compre-
hensive understanding. In scene perception research there

exist the term ‘gist’ for this superficial judgment (see Oliva
and Torralba 2001). For non-canonical viewpoints in con-
trast, the human visual system requires more time to catego-
rize the object, a late categorization in some sense (Palmer
et al. 1981). The additional time may be only tens of mil-
liseconds, hardly noticeable to humans, but has already trig-
gered a host of mechanisms starting to mentally manipu-
late the decomposed structure. Such manipulations may al-
ready be simulated in object recognition studies perform-
ing viewpoint independent recognition (e.g. Brooks 1981;
Lowe 1985). A computer vision system performing both
of these recognition tasks—and other visual recognition
tasks—may be a futuristic goal. However, a system perform-
ing fast categorization only is not. If the appropriate loose
(Cubist) vector representation can be found for those cate-
gory levels, then the assignment of an image to one of the
5000 basic-level categories within a duration of 200 ms is a
feasible goal.

One may divide present approaches to image classifica-
tion or image understanding into two opposite sides regard-
ing their degree of structural reconstruction. One side pur-
sues an exact reconstruction of the image, starting for in-
stance with image segmentation and continuing with group-
ing operations (Marr 1982; Witkin and Tenenbaum 1983;
Malik et al. 2001; Elder et al. 2003; Tu and Zhu 2006). The
aim of such approaches is to systematically extract scene
information, which eventually leads to categorization, but
actual transformations of structure have been pursued to a
limited extent only (see Sudderth et al. 2008 for image trans-
formations for object detection). The other side attempts to
avoid any elaborate reconstruction by preprocessing the im-
age with ‘simple’ features or single transformations, whose
output is then classified or matched (Oliva and Torralba
2001; Renninger and Malik 2004; Mori et al. 2005). The
former approach may be hampered by the pursuit of per-
fect reconstruction, the latter by too little reconstruction.
The present approach aims in between and attempts to rigor-
ously transform structure without placing emphasis on per-
fect reconstruction. It follows the viewpoint that a multitude
of mechanisms is required to recognition (Minsky 1975),
whereby the challenge is to find the precise mosaic of mech-
anisms, which transforms a structure into a highly distinct
description within a multi-dimensional space allowing so
for fast assignment to a category representation. The idea
that the human visual system may use a multi-dimensional
space for representation has been suggested by Mel (1997).

The decomposition output is suitable for visual search,
i.e. the selection of a region of interest, because structure
is expressed as a list of vectors. The list of vectors can
now be searched for variances, which represent potentially
interesting points (or regions). Indeed, our decomposition
model can explain all variances discovered in seminal stud-
ies of human visual search (Noton and Stark 1971; Treisman
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and Gormican 1988). Others have already implemented ar-
chitectures to mimic such search behavior (Itti et al. 1998;
Privitera and Stark 2000; Rajashekar et al. 2008), however
those models merely extract straight contour orientations
and can therefore explain only a small number of those find-
ings. In contrast, the presented model explains a much larger
number of findings such as the computation of precise con-
tour curvature, contour angle and aperture of an arc (Treis-
man and Gormican 1988, Figs. 5, 10 and 11 respectively).

Some of the dimensions developed here certainly have
a relation to the ones developed in texture studies (Ravis-
hankar Rao and Lohse 1993; Haralick 1979; Tamura et al.
1978; Amadasun and King 1989). For instance, the region
dimension seems analogous to the coarseness property. In
many of those studies, the creation of such properties is
based on or is related to human judgment about the cognitive
qualities of texture properties.

6.2 System Performance

The performance of our system reaches the one of other
fast categorization systems when those did not use any type
of human-supervised learning cues (see Sect. 5.4). How-
ever, our system was not particularly tuned to any image
set yet; and the system operates on any image type (texture,
shape, object and scene) which is particularly demonstrated
with the relatively high search percentage for the Caltech
set (see Sect. 5.3). But most importantly, our method al-
lows for an understanding of image parts (components, re-
gions), because the local/global space and the area segments
are detailed representation (see also previous subsection).
While in the other category systems (Fergus et al. 2007;
Oliva and Torralba 2001) a new preprocessing of the im-
age had to take place in order to understand parts of it (see
Torralba et al. 2006 for instance), in our approach this is not
necessary as a structural decomposition is the center piece
of the methodology.

Although image search was not the focus of the study
(Fig. 8; Figs. 6–8 in supplementary material), it makes it
worthwhile relating to studies pursuing such tasks, e.g. (Hei-
demann 2005; Wang et al. 2001; Mojsilovic et al. 2004;
Vogel and Schiele 2007). These studies use traditional tech-
niques such as image segmentation, template matching and
interest points. Some perform on large collections, searching
for any type of image (Heidemann 2005; Wang et al. 2001;
Novak et al. 2008); others describe the content of a smaller
number of images, but with a specialization in subordinate
categories (Vogel and Schiele 2007). Common to all these
approaches is that their success depends to a large extent on
the use of color information. We think that our image-search
results compare well to theirs (e.g. Fig. 8, Heidemann 2005;
Figs. 12–14, Mojsilovic et al. 2004), yet our results are ob-
tained without the use of any color information. An impor-
tant constraint of such an applied image search is that it has

to occur fast. The present decomposition may require more
computation time than the techniques in the other studies,
but the image size in this study was only 192 × 128 pixels,
less than half the size of the images in the other studies.

6.3 Outlook

A continuation of the present approach needs to address the
following issues:

(1) Combination of descriptors: A scheme for combining
different descriptors needs to be developed, which searches
for category-specific combinations of several descriptors,
across different contours and regions, and also across differ-
ent spatial scales. Studies using (unparameterized) contour
segments for object description and search may serve as a
source of inspiration for such schemes (Shotton et al. 2005;
Opelt et al. 2006).

(2) Partitioning: Although the display of collected
category-specific descriptors suggests that the present par-
titioning rules seem to suffice (Fig. 6), those collected de-
scriptors were probably the ones which were ‘naturally’ par-
titioned by a large contrast. However, the key to proper parti-
tioning may be a (global) context analysis, that is a compar-
ison of the LG spaces of all image contours, before specific
partitioning points are chosen.

(3) More abstraction: So far only contours and the region
between two contours were abstracted. An attempt should be
made to abstract also complex regions, for instance as out-
lined by the intersecting sym-axes (which were partitioned),
as well as vertex and T-feature features (Lowe 1985). The
latter are rare but can be crucial for the description of some
objects. The traditional method to detect them is to deter-
mine distances between contours, but they can also be found
exploiting the methodology presented here, for instance by
detecting proximal starting points of sym-axes (s1).

(4) Grouping: The SAT can be regarded as a local group-
ing mechanism, but grouping should also take place on a
more global level. One possibility is to exploit the spatial
scale: areas of a coarser scale often encompass the texture
on a finer scale and an abstraction for the texture could be
developed, e.g. histogramming. But this type of scale-based
grouping may not be sufficient for a reason analogous to the
analysis of contour geometry: the LG space was developed
in order to circumvent the loss of structural information
through smoothing. Similarly, one should explore global-
grouping mechanisms applied to the same spatial scale. As
the contours and areas are expressed as vectors, such group-
ing could be performed by mere vector analysis.

(5) Appearance description: the choice of appearance
dimensions is rather simple (luminance and fuzziness di-
mensions; cm, fm, . . .), but texture perception studies have
shown that the detailed distribution of luminance values
seems to be a strong determinant for proper texture iden-
tification (Dror et al. 2004; Motoyoshi et al. 2007). A more
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thorough parameterization of the luminance distribution
should therefore be tested.

Summarizing, we propose that a many-to-many feature
matching concept should be an essential part of fast catego-
rization (see also Demirci et al. 2006), but this is not to ar-
gue for a specific representation. The present evaluation has
shown that statistical (histogramming) and structural (de-
scriptors) information are both very powerful for catego-
rization. Given the presented decomposition, segmentation
and grouping operations may be carried out in a novel light
(Malik et al. 2001; Tu and Zhu 2006; Elder et al. 2003), yet
with the caveat not to pursue an exact reconstruction. Fur-
thermore, the challenge of fast categorization may not be
clearly separable from the task of retrieving a frame, which
contains the information of spatial relations amongst ob-
jects or scene parts (Biederman et al. 1982). Thus, mech-
anisms such as scale selection (Berengolts and Lindenbaum
2006), saliency detection (Kadir and Brady 2001) or sequen-
tial pattern recognition (Fu 1968), must be taken into ac-
count for a solution to fast categorization. Even template
matching must be considered; given the enormous mem-
ory capacity of the visual system (Standing et al. 1970;
Brady et al. 2008), a ‘loose’ vector-template with multiple
descriptors may also be part of the solution. Such a repre-
sentation may not be much smaller in size than the image
per se, but the vector representation can deal with many lit-
tle structural subtleties.
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