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ABSTRACT
The MediaEval 2015 Affective Impact of Movies Task chal-
lenged participants to automatically find violent scenes in a
set of videos and, also, to predict the affective impact that
video content will have on viewers. We propose the use of
several multimodal descriptors, such as visual, motion and
auditory features, then we fuse their predictions to detect
the violent or affective content. Our best-performing run
with regard to the official metric received a MAP of 0.1419
in the violence detection task, and an accuracy of 45.038%
for the arousal estimation and 36.123% for the valence esti-
mation.

1. INTRODUCTION
The MediaEval 2015 Affective Impact of Movies Task [6]

challenged participants to develop algorithms for finding vi-
olent scenes in movies. Also, in contrast to previous years,
the organizers introduced a completely new subtask for de-
tecting the emotional impact of movies. The task provided
a dataset of 10,900 short video clips extracted from 199 Cre-
ative Commons-licensed movies. Detailed description of the
task, the dataset, the ground truth and evaluation criteria
are given in the paper by Sjöberg et al. [6].

Our system this year is largely based on several multi-
modal systems that already obtained good results on similar
problems [3, 4, 5].

2. METHOD
Our system builds on a set of visual, motion and auditory

features, combined with a Support Vector Machine (SVM)
classifier to obtain a violence or an affect score for each video
document. First, we perform the feature extraction at the
frame level. The resulting features are aggregated in one
video descriptor using different strategies: the average of fea-
tures, Fisher kernel(FK) [4] or Vector of Locally Aggregated
Descriptors(VLAD) [3]. Finally, the global video descriptors
are fed into a SVM multi-classifier framework. These steps
are detailed in the following.
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2.1 Feature set
Visual: We extracted ColorSIFT features [8] using the

opponent colour space and spatial pyramids with two differ-
ent sampling strategies: the Harris-Laplace salient point de-
tector and dense sampling. We employed the Bag-of-Visual-
Words (BoVW) approach where each spatial pyramid parti-
tion is represented by a 1,000 dimensional histogram over its
ColorSIFT features. We also computed the CENsus TRans-
form hISTogram (CENTRIST) descriptor proposed in [9].
In addition, we used a total of four Convolutional Neural
Networks (CNN) features, using the protocol laid out in [1].
The used CNNs were trained on either ImageNet 2010 or
2012 training datasets, following as closely as possible the
network structure parameters of Krizhevsky et al [2]. Fur-
thermore, the input images were resized to 256×256 pixels
either by distortion or center cropping, thus giving in total
four different CNNs from which we extract four different sets
of feature vectors. We use the activations of the first fully-
connected layer of each network as our features, which re-
sults in 4096-dimensional feature vectors. Ten regions were
extracted from the test images as suggested in [2] (four cor-
ners, center patch plus flipping) and then a component-wise
maximum is taken of the region-wise features.

Auditory: As for audio features, we used descriptors
provided within the block-level framework [5]. They have
been proven to be useful for retrieval, classification, and
similarity tasks in the audio and music domain. More pre-
cisely, we computed for the audio channel of each video its
spectral pattern (considers the cent-scaled spectrum on a
10-frame-basis to characterize frequency and timbre), delta
spectral pattern (computes the difference between the orig-
inal spectrum and a copy of the spectrum delayed by 3
frames), variance delta spectral pattern (considers the vari-
ance between the delta spectral blocks), logarithmic fluc-
tuation pattern (applies several psychoacoustic models and
characterizes the amplitude modulations), correlation pat-
tern (computes Pearson’s correlation between all pairs of 52
cent-scaled frequency bands), and spectral contrast pattern
(computes the difference between spectral peaks and valleys
in 20 cent-scaled frequency bands). We eventually end up
with each clip being characterized by a 9,448-dimensional
feature vector that models its audio content.
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Table 1: Results for the submitted runs.
Violence task Affect task

Description MAP Accuracy valence Accuracy arousal

run 1 Average on audio descriptors & nonlinear SVM 0.0485 33.032% 45.038%
run 2 Average on visual features & nonlinear SVM 0.0452 36.123% 34.104%
run 3 Modified VLAD with motion features & linear SVM 0.0768 29.731% 39.865%
run 4 Fisher kernel with CNN visual features [2] & linear SVM 0.1419 30.320% 44.365%
run 5 Late fusion between all the previous runs 0.0824 29.752% 37.595%

Motion: We computed the Histogram of Oriented Gradi-
ents (3D-HoG) and Histograms of Optical Flows (3D-HoF)
cuboids motion features [7]. First of all, we computed each
feature in 3D blocks with a dense sampling strategy: first
the gradient magnitude responses in horizontal and vertical
directions are computed. Then, for each response the mag-
nitude was quantized in k orientations, where k = 8. Finally,
these responses were aggregated over blocks of pixels in both
spatial and temporal directions and concatenated.

2.2 Frame aggregation
Results from the literature showed that adopting Fisher

kernel [4] and VLAD [3] representations in many video clas-
sification tasks allow for achieving higher accuracy than the
use of traditional Bag-of-Words histogram representations.
This is because these representations capture temporal vari-
ation over the frames within a video. We used two classical
methods to encode the temporal variation over frame-based
features, the Fisher Kernel [4] and a modified version of
Vector of Locally Aggregated Descriptors [3]. Then, we ag-
gregated the frame features already presented in Section 2.1.

2.3 Classifier
The final component of the system consists of the data

classifier which is fed with the multimodal descriptors com-
puted on previous steps. Among the broad choice of existing
classification approaches, we selected a SVM classifier. We
tested several type of kernels, i.e., a fast linear kernel and
two nonlinear kernels: RBF and Chi-Square. While linear
SVMs are very fast in both training and testing, SVMs with
nonlinear kernels are more accurate in many classification
tasks due to better adaptation to the shape of the clusters
in the feature space.

Finally, in the case of multimodal features, we combine
the SVMs output confidence values using max late-fusion
combination:

CombMean(d, q) =
N

max
i=1

cvi (1)

where cvi is the confidence value of classifier i for class q
(q ∈ {1, ..., C}), C represents the number of classes, d is
the current video, and N is the number of classifiers to be
aggregated.

3. EXPERIMENTAL RESULTS

3.1 Submitted runs
We submitted five runs for both tasks: the violence de-

tection task and the induced affect detection task. For the
first run we combined the audio features with a nonlinear
SVM classifier. For the second run, we combined several
visual features (BoVW-ColorSIFT, CENTRIST histograms
and CNN features) with nonlinear SVM classifier. The next

run uses a combination of modified VLAD with motion 3D-
HoG/3D-HoF motion features with nonlinear SVM classi-
fiers. In the fourth run, we propose the aggregation of the
CNN frame features with the Fisher kernel representation.
Then, we used a linear SVM classifier. Finally, for the fifth
task we performed a late fusion strategy of the first four
runs.

3.2 Results and discussion
Table 1 details the results for all our runs. The third

column presents the MAP results obtained on the violence
task, while the next two columns provide the final accuracy
on the second task: the valence and arousal predictions.

Audio features and standard visual features performed
poorly in the violence task. On the other side, the com-
bination of VLAD with motion features obtained better re-
sults. The best results are obtained using Fisher kernel with
CNN visual features. Fusing all the features together did not
improve the results above the FK-CNN only result. In con-
trast, in the induced affect detection task all combinations
perform similarly, except for audio features which have a
clearly better result.

4. CONCLUSIONS
In this paper, we presented several multimodal approaches

for the detection of violent content in movies. We obtained
the best results on the violence task by using motion and vi-
sual features. On the other side, we obtained the best results
on the affect task using the audio features only. The visual /
motion features obtained lower results for both valence and
arousal predictions. One reason for this is that the visual
features do not fit on the purpose of the affect task. It also
indicates that the affect task is more challenging than the
violence task.
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