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Abstract

This paper proposes a novel framework for Relevance Feedback based on
the Fisher Kernel (FK). Specifically, we train a Gaussian Mixture Model
(GMM) on the top retrieval results (without supervision) and use this to
create a FK representation, which is therefore specialized in modelling the
most relevant examples. We use the FK representation to explicitly capture
temporal variation in video via frame-based features taken at different time
intervals. While the GMM is being trained, a user selects from the top
examples those which he is looking for. This feedback is used to train a
Support Vector Machine on the FK representation, which is then applied to
re-rank the top retrieved results. We show that our approach outperforms
other state-of-the-art relevance feedback methods. Experiments were carried
out on the Blip10000, UCF50, UCF101 and ADL standard datasets using a
broad range of multi-modal content descriptors (visual, audio, and text).

Keywords: relevance feedback, Fisher Kernel representation, multimodal
content description, video retrieval.

1. Introduction

Understanding video content is in general a subjective process for a user.
Labeling video content with a predefined set of labels can greatly facilitate
search, but is unlikely to capture all possible viewpoints of users. Hence
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finding specific video content in the exponentially growing amount of digital
video becomes increasingly difficult. One solution to this problem is to em-
power the user with personalized search by iteratively having the user refine
its search queries. This is called Relevance Feedback (RF) and is the topic
of this paper. A general RF scenario for video retrieval can be formulated
as follows: First the user does an initial query using either a keyword or a
specific video for which he wants related videos. After the system has re-
turned the best matching results, the user indicates which videos are relevant
and which are not. Results are updated using the input, and this refinement
continues until the user is satisfied.

In this paper we propose a novel framework for Relevance Feedback based
on the Fisher Kernel (FK) and Support Vector Machines (SVMs). The pro-
posed approach operates on top of an existing retrieval system by refining the
initial results. First, we alter the feature space: we train a Gaussian Mixture
Model (GMM) on the top retrieved results, after which we obtain the FK
representation with respect to the GMM. Hence the new feature space is spe-
cialized in representing the top results that are representative. Afterwards,
we train an SVM using the user feedback, yielding a specialized classifier in
the new feature space. Therefore, we have an unsupervised step which alters
the feature space and a supervised step to incorporate user feedback. The
entire process is illustrated in Figure 1.

Additionally, we propose to use the FK to capture temporal information
as follows: we cut a video up in smaller temporal segments, extract a fixed-
size feature representation for each segment, and represent the resulting fea-
ture set using the FK. Notice that since the FK captures variation in features
in general, and we vary the features in time only, we effectively capture the
temporal variation using this representation (but not the temporal order).
This differs from other uses of the FK: The representation of images using
SIFT [1] and FK leads to a representation of the local visual variation in space
only while no temporal information is captured which discards meaningful
video information; Representing videos using local Histograms of Oriented
Gradients (HoG)/Histograms of Optical Flow (HoF) descriptors [2] and the
FK leads to a representation of the local variation in both time and space si-
multaneously, where space and temporal information is mixed together thus
reducing their individual representative power instead of exploiting it. In
our approach, by having fixed-sized representations of single frames or small
temporal segments with FK we manage to exploit the variation in time only
thus capturing that unique video temporal characteristics. As experimental
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Figure 1: Diagram of the proposed Fisher Kernel Relevance Feedback (displayed images
are from the Blip10000 dataset [5]).

results show, this proves highly efficient in relevance feedback based retrieval
scenarios.

This paper extends our previous work [3, 4] by including evaluation on
a new video dataset, evaluating more feature extraction schemes, analyzing
the influence of multiple relevance feedback iterations, and including a com-
putational complexity analysis. To summarize, our main contributions are
as follows:

1. We propose a novel method for Relevance Feedback based on a com-
bination of the FK and SVMs. To the best of our knowledge, this is
the first work that exploits the benefits of FK representations to video
relevance feedback;

2. We explicitly model temporal variation by combining frame-based fea-
tures with the FK;

3. We demonstrate the generality of our approach by evaluating it on a
broad range of modalities: we use visual, audio, and text descriptors.
We achieve better performance than other state-of-the-art relevance
feedback algorithms on two standard datasets [5, 6], which makes the
results both relevant and reproducible.

The remainder of the paper is organized as follows. In Section 2 we
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present the current state-of-the-art on relevance feedback and FK and po-
sition our contribution. Section 3 presents the Fisher Kernel theory and
Section 4 presents the algorithm of the proposed FK relevance feedback. Af-
terwards, in Section 5 we present an expansion of the method for temporal
aggregation with FK. The experimental setup is presented in Section 6, while
the experimental results are reported in Section 7. Finally, in Section 8 we
conclude the paper.

2. Related Work

For decades now, content-based retrieval systems focused on bridging the
semantic gap [7] by linking the low-level video features and their high-level
semantic interpretation. Video content classification remains one of the most
challenging video processing problems, mainly because it implies the classi-
fication of complex semantic categories from a huge volume of multimodal
data. To effectively handle the quick growth of multimedia data with the
objective of providing user access to the needed information, a large num-
ber of methods have been proposed for multimedia content analysis and
retrieval [70, 72, 73, 74, 75]. In this context, a standard video classification
system consists of detecting sparse spatio-temporal interest points which are
then described using local spatio-temporal features, e.g., Histograms of Ori-
ented Gradients (HoG), Histograms of optical Flow (HoF), Motion Bound-
ary Histograms (MBH) or spatio-temporal Laplacian pyramids [74]. The
features are then encoded into an aggregated representation, such as Bag of
Words (BoW), Fisher Kernel [4], Vector of Locally Aggregated Descriptors
(VLAD) [76] representations, or sparsely-constructed Gaussian processes [75]
that are then combined with a classifier.

Existing state-of-the-art algorithms for video classification can achieve
promising performance in benchmarking for many research challenges, start-
ing from genre classification to event and human activity recognition. For
instance, TRECVID [12] recently introduced a Multimedia Event Detection
(MED) Track on detecting complex events in web videos when only few pos-
itive exemplars are available. Some interesting approaches have been suc-
cessfully implemented, such as the one proposed by Yang et al. [70] where
related exemplars which convey the precise semantic meaning of an event are
used for complex event detection. The relatedness is automatically learned
and soft labels are assigned to related exemplars adaptively.
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Convolutional Neural Networks (CNNs) have been also proved to be an
effective class of models for understanding video content, giving state-of-the-
art results in many video recognition problems. For instance, Xu et. al. [71]
introduces a new encoding technique that generates a video representation
based on CNN descriptors. In this approach, a set of latent concept descrip-
tors are used as frame descriptors, which further diversifies the output with
aggregation on multiple spatial locations at deeper stage of the network.

2.1. Relevance feedback

In order to improve the retrieval performance, an efficient solution is
to take advantage directly of the user’s feedback through Relevance Feed-
back (RF) techniques. RF helps users improve the quality of their query
statements and has been shown to be effective in many experimental envi-
ronments, e.g., Ma et al. [8], Yang et al. [9], Jones et al. [10], Wang et al. [11].
The main idea behind RF is to take the results that are initially returned
for a given query, and use the user’s feedback to refine them. Recently, a
relevance feedback track was organized by TREC to evaluate and compare
different relevance feedback algorithms for text retrieval [12]. However, rele-
vance feedback was successfully applied also for image [13, 14], multimodal
retrieval [15], biomedical approaches [16], etc.

Many RF approaches have been proposed in the literature [17]. They can
be grouped into pseudo-relevance feedback, implicit relevance feedback and
explicit relevance feedback.

Pseudo-relevance feedback [18] automatically simulates the user feedback
without any interaction. The assumption is that only a small number of the
top-ranked documents in the initial retrieval results are relevant, and these
are used for re-ranking the results. Implicit relevance feedback [19] uses the
recorded actions of the users to simulate the feedback. The user behaviour,
such as clicking on documents, clicking the browser “back” button, time spent
per web-page or scrolling, are unobtrusively monitored and used to expand
the futures queries. Finally, explicit relevance feedback is a framework in
which the user is explicitly asked which results are desirable and which not
in an interactive system. It requires more effort on the user side but is also
much more reliable.

In this paper we address the explicit relevance feedback scenario. There
are several ways to incorporate relevance feedback: by changing the query
points, by altering the feature representation, and by using classification.
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Changing query points was done by one of the earliest and most successful
RF algorithms proposed by Rocchio et al. [20]. Using the set ofR relevant and
N non-relevant documents selected from the current user relevance feedback
window, the Rocchio’s algorithm modifies the feature of the initial query
by adding the features of positive examples and subtracting the features of
negative examples to the original feature. This class of RF algorithms are
also known as Query Point Movement (QPM) approaches. A more recent
extension of this work in the context of video data is proposed by Nguyen et
al. [21].

Altering the feature representation was proposed by Rui et al. [22] in their
Relevance Feature Estimation (RFE) algorithm, which assumes that for a
given query, according to the user’s subjective judgement, some specific fea-
tures may be more important than other features. Recent extensions of this
technique have been proposed by Yuanhua et al. [23]. It uses a probabilis-
tic relevance model that exploits the term position and proximity evidence,
and assigns more weights to closer semantic terms. The techniques from
this category proved extremely fast and simple. However, one of the main
drawbacks is that the re-weighted function cannot be fully generalized and
adapted because of the diversification of multimedia concepts [24].

Finally, relevance feedback can be performed using classification. Af-
ter an initial query the user indicates which results are positive and nega-
tive examples. These are used to train a classifier and update the results.
Some of the most successful techniques use Support Vector Machines [25],
classification trees, e.g., Random Forest [14], or boosting techniques, e.g.,
AdaBoost [26]. Another perspective of the machine learning RF are the ap-
proaches that exploit some adaptive learning techniques. Yuanhua et al. [24]
propose a RF algorithm which adaptively predicts the balance coefficients
between query and feedback information, using a regression approach, and
then, it re-ranks the documents according to these coefficients. Su et al. [27]
propose a Navigation-Pattern-based RF (NPRF) to achieve high performance
for web image retrieval. The NPRF search makes use of the discovered navi-
gation patterns and various query refinement strategies, e.g., QPM and RFE,
to converge the search space toward the user’s intention effectively. How-
ever, all these techniques tend to be less efficient when there is only a limited
number or an asymmetric number of positive and negative feedback samples
provided by the user. There have been several attempts to overcome this
using Biased Discriminant Euclidean Embedding [28] and Active Re-ranking
for Web Image Search [29]. In what concerns specifically the video relevance
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feedback we can mention the approach proposed by Mei et al. [30] which
uses a combination of multimodal descriptors with relevance feedback. It is
based on a weighting strategy for each modality followed by re-ranking. An-
other relevant example is the approach in Shao et. al. [73] which introduces
a new content-based video retrieval framework for searching video databases
with human actions. It specifically incorporates spatio-temporal localization.
They outline an efficient localization model that first performs temporal lo-
calization based on histograms of evenly spaced time-slices, followed by the
spatial localization based on histograms of a 2-D spatial grid. As a final step,
the framework uses a relevance feedback algorithm that enhance even more
the performance of localization and ranking.

2.2. Fisher Kernel

The Fisher Kernel was introduced by Jaakkola et al. [31] to combine gen-
erative and discriminative methods. Specifically, a collection of features is
represented by its gradient with respect to a generative distribution. The re-
sulting vector is then used in discriminative classifiers. FK where introduced
in computer vision by Perronnin et al. [32], which applied the FK framework
to represent collections of local visual features such as SIFT [1] using Gaus-
sian Mixture Models as generative distribution. FKs found their application
in other fields as well, starting from topic-based text segmentation [35] to web
audio genre classification [34]. Sun et al. [35] proposed a latent Dirichlet allo-
cation (LDA)-based FK to exploit text semantic similarities, then employed
dynamic programming to obtain global optimization. Aran and Akarun [33]
introduced a multi-class classification strategy for a sign language data set.
They applied a multi-class classification on each Fisher score space and com-
bined the decisions of multi-class classifiers. They showed experimentally
that the Fisher scores of one class provide discriminative information for the
other classes as well. More recently, FK representation was used by Myers
et al. [36] for detection of user-defined events. They propose a set of multi-
modal features (i.e., audio, motion, visual) together with a set of late fusion
techniques.

In this paper we adopt the Fisher Kernel for Relevance Feedback in video
for two purposes. (1) Instead of learning the generative probability distri-
bution over all features of the data, we learn it only over the top retrieved
results. Hence during relevance feedback we create a new FK representation
based on the most relevant examples. (2) In addition, we use the FK to
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capture temporal variation. We do this by cutting up a video in smaller
segments, extract a feature vector from each segment, and represent the re-
sulting feature set using the FK model. Since the variation in features is
caused by varying time only, we effectively capture the temporal variation.
This approach is in particular interesting for enriching the representative
power of the video description scheme.

3. Fisher Kernel Theory

The main idea behind FK representation is to describe a signal as the
gradient of the probability density function that is a learned generative model
of that signal. Intuitively, such representation measures how to modify the
parameters of the probability density function in order to best fit the signal,
similar to the measurements in a gradient descent algorithm for fitting a
generative model [31]. The FK representation obtained is then used in a
discriminative classifier to solve the classification problem.

Given a collection of T labeled multimodal video descriptors, X = {x1, x2,
..., xT}, X can be represented by its gradient vector with respect to a Gaus-
sian Mixture Model (GMM), uλ, with parameters λ:

G(X)λ =
1

T
5λ log (uλ(X)) (1)

where 5{.} is the gradient operator. Also, we assume that the covariance
matrices are diagonal.

Intuitively, the gradient of the log-likelihood describes the direction in
which the model parameters should be modified to best fit the data. In our
approach, we will exploit this property to learn the user’s feedback when only
a small amount of samples are available. The dimensionality of this vector
depends only on the number of parameters in λ, and not on the number of
descriptors T [31].

The gradient vector is, by definition, the concatenation of the partial
derivatives with respect to the model parameters. Let µi and σi be the
mean and the standard deviation of i’s Gaussian centroid, γ(i) be the soft
assignment of descriptor xt to Gaussian i (with t = 1, ..., T ), and let D
denote the dimensionality of the descriptors xt. G

x
µ,σ,i is the D-dimensional

gradient with respect to the mean µi and standard deviation σi of Gaussian
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i. Mathematical derivation leads to [32]:

Gx
µ,i =

1

T
√
ωi

T∑
t=1

γ(i)
xt − µi

σi
(2)

Gx
σ,i =

1

T
√

2ωi

T∑
t=1

γ(i)

[
(xt − µi)

2

σi2
− 1

]
(3)

where the division between vectors is a term-by-term operation.
Using this representation, the final gradient vector Gx, i.e., our new de-

scriptor, is the concatenation of the Gx
µ,i and Gx

σ,i vectors, for i = 1, ..., T .
This leads to a 2 · T · D dimensional vector compared to the initial feature
vector of size D.

In this paper, we exploit further the formalization introduced by [32]. The
novelty of this paper is represented by the adaption of the algorithm to the
relevance feedback problem. Also, instead of using the keypoint descriptors,
the proposed FK representation is applied on a frame-based representation
that allows capturing the variation in time (see Section 5). Furthermore,
we demonstrate the generality of the method by using several multimodal
features, stating from audio, text, motion and global visual features. The
proposed approach is introduced in the following section.

4. The Fisher Kernel for Relevance Feedback

Our method is visualized in Figure 1 and presented with Algorithm 1.
First, an initial ranking is obtained using a Nearest Neighbour query with
the objective of simulating an initial retrieval system. Then, our Relevance
Feedback mechanism works in two steps: (1) Altering Features. Based on the
top n results we train a Gaussian Mixture Model on the top n videos. We
represent the top k videos using the FK with respect to this GMM, where
n << k. (2) Training. After the user has labelled the top n videos (n is
in general small), we train a SVM classifier on the FK representation. We
apply this classifier to the top k videos. We now describe these two steps in
detail.

4.1. Altering Features

Initially, given a user query, we use a nearest-neighbour search to return
a ranking of the most likely videos. We take the top n videos and train
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Algorithm 1: FK relevance feedback approach

Initial parameters:

Labeled video sample set: Vti and labels Yi;
Labeled video features set: Xtik ;
Unlabeled video sample set: Vnr;
Unlabeled video features set: Xnrk

;
SVM Classifier parameters (C, γ);
n: the window size;

Start:

do PCA reduction for all multimodal features ;

Altering features step:

Compute GMM centroids for Xtik;
for x ⊂ Xt do

compute FK(Xtik) = FK(Xtik , GMM);
normalize FK(Xtik);

Training - reranking step:

train SVM(C, γ) using FK features ;

for x ⊂ Xn do
compute FK(Xnrk

) = FK(Xn, GMM);
normalize FK(Xnrk

);
compute h(Xnrk

) = SvmConfidenceLevel(FK(Xnrk
));

sort h(Xn) values ;
show new ranked list according to h(Xn) values ;

a GMM model using a diagonal covariance matrix on the features of these
videos. Hence we change the representation of our feature space based on
the highest ranked examples. In our experiments, we use n = 20. Since
our method of altering the feature space is unsupervised, the GMM can be
trained in the background during the time that the user is providing feedback.
Initially, in order to speed up the GMM algorithm, we initialize the centroids
using k-means, that allows a fast convergence. The GMM contains several
parameters which impact the performance of the algorithm: the number of
clusters c, the size of video features and the normalization techniques.
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The number of clusters c is proportional with the size of FK representa-
tions, thus, for a practical system the number of clusters has to be low. Also,
the feature’s size represents another parameter which is proportional with
the final size of FK representation. Therefore, to make the FK computa-
tionally feasible, we first apply Principal Component Analysis (PCA) on the
original feature vectors of the videos. After obtaining the mixture model, we
convert the original features of the top k videos into the FK representation as
presented in equations 2 and 3. Note that in some experiments we only use a
single cluster (c = 1). In this case the FK representation consists of both the
absolute and quadratic Mahalanobis distance to this single Gaussian cluster,
which we show to be a good alteration of the feature space.

The final step is the normalization of the obtained FK representation. It
has been shown in [31] that normalization significantly increases the perfor-
mance of the FK representations. Details are presented in Section 7.1.

4.2. Training - re-ranking step

The training step is represented by a SVM classifier. The classic binary
SVM training algorithm builds a linear margin that maximizes the distance
between two classes, but also it can efficiently perform a non-linear classifi-
cation. More recently, SVMs found their application with relevance feedback
approaches. In these approaches, the relevance feedback problem can be
formulated either as a two class classification of the negative and positive
samples or as an one class classification problem [37], i.e., separate positive
samples by negative samples.

In our algorithm, the SVM model is trained on the top n documents,
according to the user’s feedback (e.g., n = 20). After the training step, the
top k documents are ranked according to the SVMs confidence level, where
k is typically 1000 in our experiments (n << k). The reason to only re-
rank the top k is two-fold. First of all, it is unlikely that relevant videos
are ranked lower than the top k of the initial query. Using only the top k is
faster. Second, the GMM is trained on the top n examples only. This means
that the feature space is highly suited for representing examples close to the
top n, but less suited for examples further away.

We use cross-validation to optimize the slack-parameters. We can do
this fast because due to the Relevance Feedback we have only few training
examples.
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5. Frame Aggregation with Fisher Kernel

Global features are often used for reasons of computational efficiency.
Also, most of the video content description approaches compute a global
representation obtained by aggregating those frame-based features. How-
ever, frames in videos change over time, so an important question is: how
can we meaningfully aggregate frame-based features in order to preserve that
variation in time? One method is to aggregate all the features in one descrip-
tor by computing the mean over all the frames, but the variation in time is
ignored [42, 43]. Those approaches mix information, disregarding appearance
variation over time. Alternatively, a video document can be represented as
a set of multiple vectors and the similarity between two videos may be com-
puted as the distance between two sets of points using, for example, the Earth
Mover distance [45]. However, these metrics involve a huge computational
cost for large databases.

The FK representation was created to model the variation of a set of
vectors into a single fixed-sized representation. Hence by using features from
different time-steps, we effectively model the variation in time. In the context
of Relevance Feedback, we train a GMM only on the top n videos. This
creates a feature space specialized to represent differences between relevant
examples.

For cutting up the video into temporal chunks, we select T frames from
each video and we compute a visual feature for each video frame: Xk =
{x1, x2, ..., xT}. Then, we train a GMM on the features of the top n videos
Xik, where i ≤ n and k ≤ T . Once the generative model is trained, every
training sequence of feature vectors, Xi = {x1, x2, ..., xT}, is transformed into
a vector of fixed length. The main difference between the previous approach
proposed in Section 4.1 and this one concerns the data the GMM was learned
on. Instead of using one global aggregated video feature, we will use more
features per document. By using this approach, the GMM will learn from
more data and the final FK representation contains more information. It
is worth mentioning that the resulting FK representation will still have the
same dimension.

Experiments in Section 7.4 show the performance of the frame aggrega-
tion on the relevance feedback (denoted as T ≥ 1), while experiments in
Section 7.2 to 7.3 discuss the performance of the algorithm when we use only
one video global descriptor (denoted as T = 1).
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Figure 2: Sample images from the Blip10000 [5], UCF50 [6], UCF101 [61] and ADL [62]
datasets.

6. Experimental Setup

In this section we discuss the evaluation framework (dataset and metrics)
and the choice of content descriptors.

6.1. Datasets

The validation of the proposed relevance feedback approach was carried
out on four standard video datasets, namely: Blip10000 - Video Genre Tag-
ging dataset [5], UCF50 - Sport Action Recognition dataset [6], UCF101 -
Action Recognition dataset [61] and ADL - Daily Activities dataset [62].
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Blip10000: consists of 15,000 video sequences (with more than 3,250 hours
of footage) retrieved from blip.tv1 web platform. Each video is labeled ac-
cording to 26 web specific video genre categories, namely: art, autos and
vehicles, business, citizen journalism, comedy, conferences and other events,
documentary, educational, food and drink, gaming, health, literature, movies
and television, music and entertainment, personal or auto-biographical, poli-
tics, religion, school and education, sports, technology, the environment, the
mainstream media, travel, videoblogging and web development and sites. A
“default category” is provided for movies which cannot be assigned to neither
one of the previous categories. Apart from the video data, the dataset pro-
vides associated social metadata, automatic speech recognition transcripts
(ASR transcripts) and shot information including key frames. The dataset
was successfully validated during 2010-2012 MediaEval benchmarking cam-
paigns [38].

UCF50: consists of 6,600 realistic videos from YouTube2 with large varia-
tions in camera motion, object appearance and pose, object scale, viewpoint,
cluttered background, illumination conditions, etc. Videos are labeled ac-
cording to 50 action categories, namely: baseball pitch, basketball shooting,
bench press, biking, billiards shot, breaststroke, clean and jerk, diving, drum-
ming, fencing, golf swing, playing guitar, high jump, horse race, horse riding,
hula hoop, javelin throw, juggling balls, jump rope, jumping jack, kayak-
ing, lunges, military parade, mixing batter, nun chucks, playing piano, pizza
tossing, pole vault, pommel horse, pull ups, punch, push ups, rock climb-
ing indoor, rope climbing, rowing, salsa spins, skate boarding, skiing, soccer
juggling, swing, playing tabla, TaiChi, tennis swing, trampoline jumping,
playing violin, volleyball spiking, walking with a dog, and YoYo.

UCF101: consists of 13,320 realistic videos from YouTube with large varia-
tions in camera motion, object appearance and pose, object scale, viewpoint,
cluttered background, illumination conditions, etc. The videos are labelled
according to 101 action categories, with each containing 25 groups (each
group consisting of 4 to 7 videos of an action). The videos from the same
group may share some common features, such as similar background, similar
viewpoint, etc. The action categories can be divided into five types: human-

1http://blip.tv/
2http://www.youtube.com/
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object interaction, body-motion only, human-human interaction, playing mu-
sical instruments and sports.

ADL: contains 10 different activities, i.e., answering a phone, dialing a
phone, looking up numbers in a phone book, writing on a white board,
drinking water, eating a snack, peeling a banana, eating a banana, chop-
ping a banana and eating food with silverware. Each of these activities is
performed 3 times by 5 different people. These people have different genders,
ethnicity, and appearance so sufficient appearance variation is available in the
dataset. Each clip is in the range of 3-50s. In total the dataset contains 150
videos.

These datasets are particularly challenging due to the diversity of video
footage, and specifically the variability of videos within the same categories,
as well as due to the number of high level concepts proposed. Figure 2
illustrates some image examples in this respect.

6.2. Evaluation

In all the experiments we consider the scenario where user feedback is au-
tomatically simulated with the known class membership of each video doc-
ument, retrieved from the ground truth. This approach allows a fast and
extensive simulation which is necessary to evaluate different methods and
parameter settings, otherwise impossible with realtime user studies. Such
simulations represent a common practice in evaluating relevance feedback
scenarios [25, 22, 26, 27, 30].

To assess retrieval performance, we use several metrics. Firstly, we com-
pute precision and recall. Precision represents the fraction of retrieved videos
relevant to the find (measure of false positives) and recall is the fraction of
the videos relevant to the query that are successfully retrieved (measure of
false negatives). The retrieval response of the system is assessed with the
precision-recall curves, which plot the precision for all the recall rates that
can be obtained according to the current video class population.

Secondly, to provide a global measure of performance, we estimate the
overall Mean Average Precision (MAP), which is computed as the mean of
the average precision scores for each query:

MAP =

Q∑
q=1

AP(q)

Q
(4)
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where Q represents the number of queries, and AP () is given by

AP =
1

m

n∑
k=1

fc(vk)

k
(5)

where n is the number of videos, m is the number of videos of category c, and
vk is the k-th video in the ranked list {v1, ..., vn}. Finally, fc() is a function
which returns the number of videos of genre c in the first k videos if vk is of
genre c and 0 otherwise (we used the trec eval scoring tool3).

In our evaluation, we systematically consider each video from the database
as query and retrieve the remainder of the database accordingly. Precision,
recall and MAP are averaged over all retrieval experiments. Relevance feed-
back was collected from various browsing top n result windows, with n rang-
ing from 10 to 30. For brevity reasons, in the following we shall present
only the results obtained for n = 20, which we think it represents a good
trade-off between user-input and the accuracy of the system. Moreover, ex-
perimenting with other values of n proved to have little influence on the
overall conclusions.

6.3. Content descriptors

Video information is represented with content descriptors. At the mo-
ment, there is a huge amount of literature in this area, and covering all the
existing techniques is impossible. For evaluation, we selected some of the
representative approaches that are known to perform well in many bench-
marking scenarios [12, 39, 40, 41] as well as which are adapted to our experi-
mentation tasks (genre and action -based retrieval). The scope of this paper
is to demonstrate the efficiency of the general Fisher Kernel representation
relevance feedback framework which is not dependent on a particular type of
descriptor but can be adapted to respond to various retrieval scenarios.

It is well know that different modalities tend to account for different in-
formation providing complementary discriminative power. For video content
description we experiment with all the available sources of information, from
the audio, and visual, to highly semantic textual information obtained with
Automatic Speech Recognition (ASR) as well as user generated data (e.g.,
metadata that typically accompany video content on the Internet).

3http://trec.nist.gov/trec_eval/

16



Visual descriptors:

• MPEG-7 related descriptors (1,009 values) [50] - we adopted standard
color and texture-based descriptors such as: Local Binary Pattern, au-
tocorrelogram, Color Coherence Vector, Color Layout Pattern, Edge
Histogram, Scalable Color Descriptor, classic color histogram and color
moments. For each sequence, we aggregate the features by taking the
mean, dispersion, skewness, kurtosis, median and root mean square
statistics over all frames (exploiting all the statistical moments per-
forms better than using only a few [59]);

• HoG features (81 values) [51] - exploits local object appearance and
shape within an image via the distribution of edge orientations. The
image is divided into small connected regions (3x3) and for each of
them building a pixel-wise histogram of edge orientations is computed.
In the end, the combination of these histograms represent the final
descriptor;

• structural features (1,430 values) [52] - characterize the geometric prop-
erties of contours via a local/global space transformation. On this
transformed space, parameters are derived to classify contour global
geometry (e.g., arc, inflexion or alternating) and describe local aspects
(e.g., degree of curvature, edginess, symmetry). These descriptors were
reported to be successfully employed in tasks such as the annotation of
photos and object categorization [53];

• Bag-of-Visual-Words of SIFT features (20,480 values) [54] - we extract
a bag of words model (BoVW) over a selection of key frames (uniformly
sampled). We use a visual vocabulary of 4,096 words (which represent
a common value for video related tasks and gives good results on both
the TRECVID and Pascal VOC datasets [60, 41]) and the keypoints
are extracted with a dense sampling strategy. We use rgbSIFT features
[54] and final descriptors are represented at two different spatial scales
of a spatial pyramidal image representation [55];

• color naming histograms (11 dimensions) [56] - describes the global
color contents and it maps colors to 11 universal color names. We
select this feature, in addition to the classic color histogram, because
the color naming histogram is designed as a perceptually based color
naming metric that is more discriminative and compact;
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• Convolutional Neural Network descriptors (4,096 dimensions) [63, 64,
68] - we use a set of Convolutional Neural Networks (CNN) features,
using the protocol laid out from [63]. The employed CNNs were trained
on either ImageNet 2010 or 2012 datasets, following as closely as pos-
sible the network structure parameters of Krizhevsky et al. [64]. We
use the activations of the first fully-connected layer of each network as
our features, which results in 4096-dimensional feature vectors.

Motion descriptors:

• Histograms of optical Flow (72 dimensions) [57] - computes a rough
estimate of velocity at each pixel given two consecutive frames. We use
optical flow at each pixel obtained using Lucas-Kanade method [57]
and apply a threshold on the magnitude of the optical flow, to decide
if the pixel is moving or stationary. For all the features, we divide the
frames in 2x2 and 3x3 regions and then we compute the feature for
each region [55];

• 3DHoG cuboids (72 dimensions) [65] - we compute the Histogram of
Oriented Gradients cuboids motion features. First of all, we compute
each feature in 3D blocks with a dense sampling strategy, i.e., the
gradient magnitude responses in horizontal and vertical directions are
computed. Then, for each response the magnitude is quantized in k
orientations, where k = 8. Finally, these responses are aggregated over
blocks of pixels in both spatial and temporal directions and concate-
nated;

• Body-part features (144 values) [67] ] - approximate the optical flow that
is computed on the body-part components. Human pose and body-part
motion obtained good results in many event detection categories [67,
66]. We extract the body-part components using the state-of-the-art
body-part detector in [66] and compute at every frame for all 18 body
parts a Histogram of Optical Flow in 8 orientations [67].

Audio descriptors:

• block-based audio features (11,242 values) [48] - capture the temporal
properties of the audio signal. We choose a set of audio descriptors that
are computed from overlapping audio blocks (groups of audio frames).
On each block, we compute the Spectral Pattern which characterizes
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the soundtrack’s timbre, delta Spectral Pattern which captures the
strength of onsets, variance delta Spectral Pattern which represents
the variation of the onset strength over time, Logarithmic Fluctuation
Pattern which captures the rhythmic aspects, Spectral Contrast Pat-
tern, Correlation Pattern which compute the temporal relation of loud-
ness changes, Local Single Gaussian Model and Mel-Frequency Cepstral
Coefficients (MFCC). Sequence aggregation is achieved by taking the
mean, variance and median over all audio blocks;

• standard audio features (196 values) [49] - we use a set of general-
purpose audio descriptors, namely: Linear Predictive Coefficients, Line
Spectral Pairs, MFCCs, Zero-Crossing Rate, spectral centroid, flux,
rolloff and kurtosis, augmented with the variance of each feature over a
certain window (we use the common setup for capturing enough local
context that is equal to 1.28s). For a sequence, we take the mean and
standard deviation over all frames.

Text descriptors:

• TF-IDF of ASR data (3,466 values) [38] - describes textual data ob-
tained from Automatic Speech Recognition of the audio signal. Tf-Idf
is a numerical statistic that is intended to reflect how important a word
is to a document in a collection or corpus, and it represents the product
of two statistics, the term frequency (measures how frequently a term
occurs in a document) and inverse document frequency (computes how
much information the term provides, that is, whether the term is com-
mon or rare across all documents). For ASR we use the transcripts
provided by [58] that proved highly efficient to genre classification [38].

Depending on the dataset (and available information) different descriptor
combinations were employed. For Blip10000 we use all the above mentioned
descriptors except for the HoF motion information; we also use the combi-
nation of all visual descriptors and all the visual, audio and text features.
All the visual and audio descriptors are normalized by using the L∞ norm,
and text descriptors with the cosine normalization. Descriptor aggregation
is accomplished with an early fusion approach. For this dataset, we decided
not to use motion features because of their high computational complexity
which makes them inefficient. For UCF50 and UCF101 datasets we only use
several of the visual descriptors, HoG (to account for feature points informa-
tion), and color naming histogram (to account for color information); and
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motion features that are more representative for this dataset (3DHoG and
HoF). Also, we added the CNN features which obtained good results in many
multimedia classification tasks. We did not use audio and text information
because the videos from UCF50 / UCF101 / ADL datasets do not contain
sound and metadata are not available. For the ADL dataset we use only
the body-part and 3DHoG features which already provided state-of-the-art
results in many approaches [67, 66].

7. Experimental results

To validate our approach we conducted several experiments which are
presented in the following. The first experiment (Section 7.1) motivates
the choice of the best feature - metric combination for the retrieval and we
study the influence of Fisher Kernel parameters on system’s accuracy. The
second experiment (Section 7.2) deals with comparing our relevance feedback
with other relevant work from the literature. A third experiment (Section
7.3) studies the relevance feedback performance with a global Fisher Kernel
representation by learning the GMM model on the entire sequence. The
fourth experiment (Section 7.4) investigates the benefits of using the Fisher
Kernels representation locally to capture the temporal variation at frame
level in the sequence. The final experiment (Section 7.5) consists in assessing
the computational complexity of the proposed framework.

To introduce our approach and focus solely on its performance, we simu-
lated an environment for the retrieval system on top of which the relevance
feedback will operate. We select a classic Nearest-Neighbour strategy for
retrieving the initial results. Using a video as query, we achieve a rank list
of videos from the dataset. The user will label only a reduced number of
documents, which constitutes the initial RF window.

7.1. Feature metrics and normalization

Distance metrics are often used to compare the similarity of two multime-
dia objects, each represented by a set of features in high-dimensional spaces.
Motivated by the assumption that a better initial performance of the retrieval
system will trigger a better relevance feedback performance, we have tested
the performance of several metrics [44]: Euclidean, Manhattan, probabilis-
tic divergence measures such as Canberra [47], intersection family: Cosine
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Table 1: Best descriptor - metric combination for the initial retrieval without relevance
feedback.

descriptor best metric MAP

Blip10000 dataset

HoG Euclidean 17.18%

structural features Chi Square 11.58%

BoVW of SIFTs Euclidean 19.85%

MPEG-7 and related Mahalanobis 21.14%

standard audio features Mahalanobis 29.26%

block-based audio features Canberra 17.18%

TF-IDF on ASR Bray Curtis 20.41%

UCF50 dataset

color naming histogram Chi Square 24.22%

HoG Chi Square 26.34%

HoF Chi Square 25.99%

CNN Euclidean 27.38%

BoW-3DHoG Euclidean 28.79%

UCF101 dataset

color naming histogram Chi Square 21.19%

HoG Chi Square 24.22%

HoF Chi Square 23.58%

CNN Euclidean 24.79%

BoW-3DHoG Euclidean 25.37%

ADL dataset

Body-part features Euclidean 57.31%

3DHoG features Euclidean 51.22%

Distance, Chi-Square distance used in machine learning and data cluster-
ing, Bray Curtis [46], Mahalanobis [46], Kullback-Leibler divergence [46] and
Earth’s Mover distance [45].

Based on this experiment, each descriptor will be associated to a specific
metric which provided the best retrieval accuracy. The results point out
that most of the features have their own suitable metric. For instance, on
the Blip10000 dataset, the best results are obtained with five different met-
rics: Euclidean, Chi Square, Mahalanobis, Canberra and Bray Curtis [46].
On the other hand, most of the best results on the UCF50 dataset are ob-
tained with the Chi Square distance, with the exception of CNN features
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and BoW-3DHoG, where the Euclidean distance gets the best results. Also,
similar results are obtained on UCF101 dataset. Finally, on ADL dataset we
obtained the best results with the Euclidean distance.

Although the descriptors provide in general for some of the metrics and
same dataset more or less comparable performance, the distance measure
still plays a critical role and may lead to performance variations which can
be of more than 25%. For brevity reasons, we show only the best results.
Table 1 summarizes the best performance descriptor - metric combination
and their associated MAP values. These combinations are adopted in the
following experiments.

FK parameters. Further, we study the influence of FK parameters on the
system’s performance. All experiments are done in the scenario of global FK
representation (when T=1).

In the first test we study the influence of the number of Gaussian cen-
troids. For both datasets the best results are obtained using only one GMM
centroid. In this case the size of FK descriptors will be only 2 times bigger
than of the video descriptor.

A second test consists in analyzing the influence of the FK normaliza-
tion strategies on system’s performance. By increasing the number of GMM
centroids, the FK representation become sparser. In order to counteract
this effect, we use some normalization strategies [32]. We tested four nor-
malizations and some combination of them, namely: L1 normalization, L2

normalization, power normalization (f(x) = sign(x)
√
α · |x|, where sign(x)

is the signum operator that returns 1 if x > 0, 0 if x = 0 and -1 otherwise;
and α represents a parameter of the normalization 0 ≤ α ≤ 1), and logarith-
mic normalization (f(x) = sign(x)log(α · |x|)). We obtained the best results
when we use L1 normalization, except for the text descriptors which lead to
better results using the logarithmic normalization.

To compare our approach against other relevance feedback approaches
from the literature we have selected the settings that provide the largest
improvement in performance, i.e., one GMM centroid, L1 normalization
with power normalization for all UCF50 / UCF101 / ADL descriptors and
Blip10000 audio and visual descriptors, while the logarithmic normalization
is used for text descriptors.

The last parameter that has to be taken into consideration is the SVM
kernel. Initial experiments showed that we obtained good results with linear
and RBF kernels. In the next experiments, we will use both SVM kernels:
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the linear SVM classifier and the nonlinear RBF kernel to study the impact
of both linear and non-linear approaches.

7.2. Comparison with state-of-the-art

In this section we compare the performance of the proposed FK Relevance
Feedback against other validated techniques from the literature, namely:
the Rocchio’s algorithm [20] (ROCCHIO), Relevance Feature Estimation
(RFE) [22], and some classification-based approaches: Support Vector Ma-
chines (SVM RF) [25], AdaBoost (BOOST RF) [26] and Random Forests
(RF - RF) [14].

Figure 3 presents the precision-recall curves after one iteration of rel-
evance feedback for different descriptors. Generally, all relevance feedback
strategies provide significant improvement in retrieval performance compared
to the retrieval without relevance feedback (see the dashed green line in Fig-
ure 3). However, the proposed FK Relevance Feedback algorithm (with linear
- FK linear, and RBF - FK RBF, kernels) tends to provide better retrieval
performance in all cases (see the solid black and solid blue lines in Figure 3).
For brevity reasons, we present only the charts for the Blip10000 and UCF50
datasets.

The results from Figure 3 are synthesized in terms of MAP in Table 2.
On Blip10000 dataset the highest performance is obtained using the pro-
posed FK RBF run on standard audio descriptors, with an increase of MAP
from 29.3% (without RF) to 46.3%; as well as run on all the combined de-
scriptors which yields an increase from 30.2% (without RF) to 46.8%. On
the other hand, the smallest increase in performance is obtained with BoVW
descriptors, which also achieve low results during MediaEval 2012 Tagging
Task benchmarking [59];

On UCF50 dataset, the proposed approach obtains the best results on all
the cases. The highest increase in performance is obtained using the FK RBF
run on 3DHoG descriptors, an increase of MAP from 28.79% to 49.4%. Also,
competitive results were obtained with the CNN features, namely 48.9% for
the linear kernel and 47.5% for the RBF kernel. The smallest increase in
performance is obtained with the FK RBF run on color naming histogram,
namely increase of MAP from 24.22% to 31.7%. A reason for this could
be the high diversity of classes for which the color naming histograms pro-
vide little representative power compared to the more discriminant 3DHoG
descriptors. In consequence, in many cases there are not sufficient positive

23



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

Visual

 

 

Without RF
SVM RF
Random Forest RF
BOOST RF
ROCCHIO
RFE
proposed FK Linear
proposed FK RBF

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

Audio

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

Text

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

Visual/Audio/Text

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

CN

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

HoG

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

HoF

Blip10000 dataset

UCF50 dataset

Figure 3: Precision-recall curves for different relevance feedback strategies and content
descriptors (results after one relevance feedback iteration).

feedback examples for the relevance feedback algorithms to work with. Sim-
ilar results are also obtained on the UCF101 dataset. The best results were
obtained with the 3DHoG features (MAP 45.2%), while the lowest results
were obtained with the color naming histograms (MAP 30.1%). On the ADL
dataset, the body-part features are more effective, we obtain MAP 82.7%.
This represents an improvement of more than 25%. The lowest performance
is obtained when we use the 3DHoG features. However, improvement is still
good, from 51.22% to 75.5%.

From the information source point of view, on Blip10000 dataset, audio
information proves to be highly discriminative compared to visual or text
information, and leads to very good retrieval ratios (see Table 2). At genre
level, audio features are more accurate at retrieving music, sports, news,
and commercials, as these genres have specific audio patterns. Compared
to audio descriptors, visual and text descriptors used in combination are
more discriminative for categories such as educational, art or web design
tutorials. Finally, the best performance is achieved by using all audio-visual-
textual features combined. On the UCF50 and UCF101 datasets, the highest
performance is obtained using 3DHoG motion descriptors (MAP 49.4% and
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Table 2: Mean Average Precision for various relevance feedback techniques and descriptors
(the highest values are depicted in bold; results after one relevance feedback iteration).
Feature Without

RF
Rocchio BOOST

RF
SVM
RF

RF-RF RFE FK
Lin.

FK RBF

Blip10000 dataset
HoG 17.1% 25.5% 26.7% 26.4% 26.8% 27.5% 29.4% 29.5%
structural 14.8% 21.9% 23.6% 24.6% 24.6% 23.9% 26.2% 23.9%
MPEG 7 25.9% 30.8% 32.5% 32.9% 36.8% 31.9% 40.5% 40.8%
BOVW 21.5% 25.2% 25.2% 27.6% 28.4% 28.0% 29.0% 29.3%
all visual 26.1% 32.9% 35.9% 36.1% 42.2% 32.4% 41.3% 42.2%
standard audio 29.2% 32.7% 32.8% 38.5% 40.4% 44.3% 44.8% 46.3%
block-based audio 21.2% 35.3% 39.8% 31.4% 33.4% 31.9% 43.9% 43.6%
TF-IDF on ASR 20.4% 32.5% 26.9% 34.7% 34.7% 25.8% 34.8% 35.1%
All Features 30.2% 37.9% 38.8% 40.9% 45.3% 44.9% 46.4% 46.8%

UCF50 dataset
color naming hist. 24.22% 28.7% 30.6% 29.2% 30.8% 30.8% 31.6% 31.7%
HoG 26.34% 36.7% 35.8% 38.7% 39.5% 39.4% 40.4% 41.1%
HoF 25.24% 35.1% 36.5% 35.2% 36.3% 36.1% 44.6% 44.8%
BoW-3DHoG 28.79% 37.2% 36.2% 36.8% 38.7% 39.9% 48.2% 49.4%
CNN 27.38% 37.1% 36.3% 36.9% 38.1% 39.1% 48.9% 47.5%

UCF101 dataset
color naming hist. 21.19% 26.7% 27.1% 26.2% 28.1% 26.5% 29.6% 30.1%
HoG 24.22% 33.7% 32.9% 32.5% 37.5% 37.4% 39.4% 39.9%
HoF 23.58% 30.1% 32.5% 33.7% 33.2% 34.1% 40.9% 41.9%
BoW-3DHoG 25.37% 35.2% 34.5% 34.7% 35.5% 36.2% 44.5% 45.2%
CNN 24.79% 35.1% 34.3% 34.2% 35.3% 35.8% 43.7% 42.5%

ADL dataset
body-part features 57.31% 71.1% 74.1% 76.2% 78.1% 75.5% 81.1% 82.7%
BoW-3DHoG 51.22% 63.1% 67.3% 69.1% 70.3% 70.8% 76.7% 75.5%

45.2%, respectively) while the smallest increase in performance is obtained
again with the color naming histograms. This is mainly due to the fact that
color may not be very important for action recognition. The color features
were employed with the idea to capture complementary information about
the scene context, because the sports usually tend to have predominant hues.
On the ADL dataset, we obtained the best results with the body-part features
which are very efficient on modeling daily activities classification problems
(MAP 82.7%).

Overall, for this one relevance feedback iteration, we conclude that in
most of the cases, RFE and Random Forests RF provide good results, but
the proposed approach is better. At the other end, the smallest increase in
performance is obtained using BOOST. Also, it can be observed that the
proposed FK RBF obtains slightly better performance than the approach
using the linear kernel, FK linear. Therefore, FK RBF will be used in the
further experiments.
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Figure 4: Mean Average Precision (MAP) for different relevance feedback iterations.

Another experiment is to assess the performance of the relevance feedback
when running several feedback sessions. Figure 4 plots MAP against the
number of relevance feedback iterations. For brevity reasons, we present
only the best performing approaches from the previous experiment. One
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may observe that the retrieval performance increases with each new feedback
session. The best performance is still obtained with the proposed approach,
followed by the RFE algorithm. For instance, at 5 feedback sessions, the
largest increase in performance on Blip10000 database is from MAP 26.18%
(without relevance feedback) to 48.12% (using visual features); on UCF50
is from 27.38% (without relevance feedback) to 75.30% (using the 3DHoG
descriptor); on UCF101 is from 24.79% to 70.12% (also when we use the
3DHoG descriptor); while on ADL dataset from 57.31% to 92.34% (with
body-part features). Compared to the RFE, the proposed FK RBF provides
an increase of MAP up to 5% on Blip10000 database, of 7% on UCF50 and
more than 8 percents on UCF101 and ADL (see the cyan lines in Figure 4).

7.3. A global GMM for the Fisher Kernel representation

In this experiment, we demonstrate that the FK representation is partic-
ularly suited for use in a relevance feedback scenario, when we use the global
FK approach (when T=1). Another alternative to the proposed method is
to generate a FK representation by learning a GMM on all the data. By
testing this scenario, we want to answer to the following hypothesis: do we
obtain good results because the FK representation is in general more power-
ful than our initial features, or are our performance improvements caused by
altering the features with respect to the top n results? In the first scenario,
we can just alter the features once offline. In this case the computational
speed will be increased and the proposed method will be similar to the SVM
relevance feedback. Furthermore, we would just prove that the FK represen-
tation is more powerful than our initial features, independent of our relevance
feedback settings.

To test this, we train a GMM on all the feature vectors of the whole
dataset, and represent all videos as FK representations with respect to this
global mixture model. We use these features in the SVM relevance feedback
and compare this with our proposed FK framework. Notice that the only
differences between these two systems are on what data the GMM is learned.

The results are presented in Table 3. The first column presents the per-
formance of FK representation by learning a GMM on all the data (FK RF
on all data) and the second column provides the results for the proposed
approach. It can be observed that by using a GMM trained on the top n re-
sults instead of using a global GMM, performance increases for the Blip10000
dataset starting from 4% for visual features and with more than 8% for audio
features. Furthermore, the increase in performance is higher on the UCF50
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Table 3: Comparison between FK RBF on all data and the proposed FK RF algorithm
(MAP values, highest values are depicted in bold).

Feature FK RF for all data proposed FKRF

Blip10000 dataset

visual descriptors 34.02% 38.23%

standard audio desc. 38.25% 46.34%

TF-IDF on ASR 32.37% 35.14%

UCF50 dataset

color naming histogram 28.02% 31.70%

HoG 34.21% 41.10%

HoF 35.27% 44.8%

dataset. The performance increases with 3% for the color naming histogram
and with 9% for HoF features. This experiment demonstrates that altering
the data based on the top n videos is crucial for obtaining good performance.

7.4. Frame Aggregation with Fisher Kernel

In the following, we will show the improvements using FK on relevance
feedback when we use more than one feature per video. This allows us to
use multiple clusters for the GMM.

For computational reasons, we selected for the Blip10000 dataset only
three types of descriptors: visual features, namely HoG and MPEG-7 re-
lated descriptors, that are more representative for the visual information, and
standard audio features. On the other hand, on UCF50 / UCF101 datasets,
because there are smaller sized, we used HoG, HoF, color naming histogram
descriptors and 3DHoG cuboids. We also use both body-part features and
3DHoG cuboids for the ADL dataset.

We first test what is the optimal number of centroids for the GMM used
by the FK. The experiments are carried out on Blip1000 and UCF50 dataset
and the results are presented in Figure 5. This shows that the best results are
obtained using 6 to 10 centroids. Notice the big increase when using multiple
centroids: the performance increases with 2 percents in all the cases. Also,
it can be viewed that the performance decreases with more than one percent
when the number of centroids increases.

In Table 4 we present a comparison between the MAP values of the pre-
vious global FK approach (with RBF kernel) and the frame aggregation FK
approach. SVM is presented as a baseline for comparison. The frame ag-
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Figure 5: The influence of the number of GMM centroids on relevance feedback using
frame aggregation FK RBF.

gregation FK representation for relevance feedback tends to provide better
retrieval performance in all cases with more than 3% improvement.

For instance, on Blip10000 dataset, the MAP increases from 29.59% to
32.87% for HoG features and from 40.80% to 45.43% from MPEG-7 related
descriptors. Also, the performance of audio features is improved from 46.30%
to 49.23%. Similar improvements are obtained on the UCF50 dataset: color
naming histogram yields an improvement from 31.70% to 34.35%, HoG from
41.10% to 45.49%, HoF from 44.80% to 49.82%, CN from 47.50% to 53.82%
and 3DHoG from 49.40% to 54.37%. We also obtained good results on
UCF101 dataset: color naming histograms are improved from 31.70% to
34.81, HoG from 41.10% to 45.49%, HoF from 44.80% to 49.82%, CNN from
47.50% to 53.82% and 3DHoG from 49.40% to 54.37%. On the ADL dataset
the improvement is also higher with 7%: the body-part features are improved
from 82.70% to 89.40% and the 3DHoG cuboids from 75.50% to 82.80%.

We conclude that modeling the variation in time using GMMs of 6-10
clusters yields significant improvements of performance.
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Table 4: Mean Average Precision comparison between SVM relevance feedback, proposed
global FK and the frame aggregation FK (highest values are depicted in bold).

Feature SVM RF FK RBF global frame aggr. FK
RBF

Blip10000 dataset

HoG 26.40% 29.59% 32.87%

MPEG-7 32.90% 40.80% 45.43%

standard audio 38.5% 46.30% 49.23%

UCF50 dataset

color naming hist. 29.2% 31.70% 34.81%

HoG 38.7% 41.10% 45.49%

HoF 35.2% 44.80% 49.82%

CNN 36.9% 47.50% 53.82%

3DHoG 36.8% 49.40% 54.37%

UCF101 dataset

color naming hist. 26.2% 30.10% 32.81%

HoG 32.5% 39.90% 44.20%

HoF 33.7% 41.90% 47.80%

3DHoG 34.7% 45.20% 52.40%

CNN 34.2% 42.50% 51.10%

ADL dataset

Body-part features 76.2% 82.70% 89.40%

3DHoG 69.1% 75.50% 82.80%

7.5. Evaluation of Computational Efficiency

The final experiment consists in assessing the computational efficiency
of the proposed FK relevance feedback framework. We run a computation
experiment on a regular PC and using a single core at 2.9 GHz (CPU Intel
Xeon).

The computational speed is first of all dependent on the descriptor type
and therefore size. First, we experimented by simulating various length de-
scriptors, with size ranging from 10 to 1,000 dimensions. Estimated running
times are presented in Table 5. Methods were implemented using C++ and
Matlab environment without any hardware acceleration. We use as base-
line for comparison the SVM relevance feedback and all the experiments are
provided on Blip10000 dataset.

Using FK in combination with RBF SVM and global video features, we
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Table 5: Computational speed of the proposed framework.

feature vector length 10 20 50 100 500 1,000

SVM 0.02s 0.021s 0.023s 0.024s 0.027s 0.033s

global FK RBF 0.31s 0.311s 0.315s 0.32s 0.35s 0.41s

frame aggr. FK RBF 4.12s 4.6s 4.9s 5.2s 5.6s 6.3s

Figure 6: Total computational time, in ms, per retrieval, estimated for the proposed
Fisher Kernel framework: Global FK RBF and Frame aggregation FK RBF (evaluation
on Blip10000 dataset [5]).

generate a RF iteration in less than half of second. By aggregating all the
frames with FK, the execution time of a relevance feedback iteration is near
to 4 to 6 seconds (depending on feature size). However, even if the speed is
lower, the performance of FK RF is superior. The increase of performance
between SVM RF and FK RF is presented in Table 4. This performance gain
presents an additional computational cost. Using the global FK approach,
we obtain a better performance than classical relevance feedback methods
and with a good computational trade-off.

A detailed overview of the computational time for each of the processing
steps per retrieval is provided in Figure 6. We present them for both the
global FK RBF and the Frame Aggregation FK RBF. For the first approach,
the input/output (I/O) operations take 10 ms per retrieval. The computation
of the GMM takes more than 20% of the global computation time. The Fisher
Kernel calculation is very fast, namely 220 ms. Finally, the classification step
takes 20 ms whereas the final re-ranking takes 9 ms. On the other hand, for
the Frame aggregation FK RBF the computational time is much higher. It
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takes more than 120 ms for I/O operations and less than a second for creating
the GMM dictionary. The main time consuming step is the Fisher Kernel
representation. The final classification and re-ranking steps are similar for
both experiments.

We conclude that frame aggregation with relevance feedback represents
a reasonable cost being very close to a real system scenario.

8. Conclusions

In this paper we formulated and analyzed a new approach for relevance
feedback using Fisher Kernels in the context of video retrieval. Our relevance
feedback consists of two steps: (1) altering the feature space by training a
Gaussian Mixture Model on the top retrieved results and re-representing
those features using Fisher Kernels; (2) using the user feedback to train a
personalized Support Vector Machine. Additionally, the Fisher Kernel rep-
resentation made it possible to capture temporal variation (but not temporal
order) by using frame-based features.

Our Relevance Feedback experiments showed that our method always
performs equal or better to other methods even without using temporal in-
formation: Compared to the next best method, RFE [22], we get improve-
ments on Blip10000 between 0% and 11% MAP, averaging 5.2% MAP. For
UCF50 the next best method is Random Forest RF [14] for which we get
improvements of 0.9%, 1.6%, and 8.5% MAP respectively for color naming
histograms, HoG, and HOF.

If we capture temporal information we get even better improvements at
an acceptable computational cost. By using a GMM with only 5-10 clusters a
Relevance Feedback iteration becomes 4-6 seconds, in which the user can give
its feedback. Improvements are significant: On Blip10000, we get absolute
MAP improvements of 3.3%, 4.6%, and 4.9% respectively for HoG, MPEG-7,
and standard audio features. On UCF50 we get absolute MAP improvements
of 3.1%, 4.4%, and 5.0% for respectively color naming histograms, HoG, and
HoF.
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